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Integrative Clustering by Nonnegative Matrix
Factorization Can Reveal Coherent Functional

Groups From Gene Profile Data
Sanja Brdar, Vladimir Crnojević, and Blaž Zupan

Abstract—Recent developments in molecular biology and tech-
niques for genome-wide data acquisition have resulted in abun-
dance of data to profile genes and predict their function. These
datasets may come from diverse sources and it is an open ques-
tion how to commonly address them and fuse them into a joint
prediction model. A prevailing technique to identify groups of re-
lated genes that exhibit similar profiles is profile-based clustering.
Cluster inference may benefit from consensus across different clus-
tering models. In this paper, we propose a technique that develops
separate gene clusters from each of available data sources and
then fuses them by means of nonnegative matrix factorization. We
use gene profile data on the budding yeast S. cerevisiae to demon-
strate that this approach can successfully integrate heterogeneous
datasets and yield high-quality clusters that could otherwise not be
inferred by simply merging the gene profiles prior to clustering.

Index Terms—Clustering, data fusion, gene profiling, gene set
enrichment, nonnegative matrix factorization (NMF).

I. INTRODUCTION

MODERN experimental approaches in molecular systems
biology provide us with data that are rich in the number

of observed objects (e.g., genes) and in the conditions where
these are studied. Today, a major challenge to exploit avail-
able data is addressed by crafting of computational approaches
that can propose potentially useful hypotheses from the ever-
increasing volume of data repositories and heterogeneity of data
sources.

A common task in molecular biology is gene function predic-
tion. We can exploit currently available functional annotations
in model organisms in combination with various sources of ex-
perimental data to infer functions of yet uncharacterized genes.
A popular approach for this task is gene clustering [1]. Cluster-
ing infers groups of similarly profiled genes. The experimental
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S. Brdar and V. Crnojević are with the Faculty of Technical Sciences,
University of Novi Sad, 21000 Novi Sad, Serbia (e-mail: brdars@uns.ac.rs;
crnojevic@uns.ac.rs).

B. Zupan is with the Faculty of Computer and Information Science, University
of Ljubljana, SI-1000 Ljubljana, Slovenia (e-mail: blaz.zupan@fri.uni-lj.si).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JBHI.2014.2316508

data that characterize genes are considered for the assessment
of gene similarity and the function of uncharacterized genes is
inferred from the prevailing function of the genes in the cluster.
This “guilt by association” principle assumes that gene clus-
ters are also functionally enriched, that is, genes with similar
functions will cluster together, making the clusters coherent in
terms of functions carried out by genes in the cluster.

Large-scale molecular biology experiments may provide
the data for profiling thousands of genes. These profiles
may include condition- or development stage-specific gene
expressions, mutant-based phenotypes such as growth rates or
measurements of fitness, and gene interactions. Profiles that
stem from different types of experiments may result in gene
clusters of different coherence and hence different utility for
gene function prediction. An open question is how to integrate
the results of clustering coming from different types of gene pro-
files to increase the quality of clusters with respect to enrichment
of their associated gene functions.

In bioinformatics, integrative approaches are motivated by
the desired improvement of robustness, stability, and accuracy.
Troyanskaya et al. introduced a Bayesian integrative framework
[2]–[4] that examines information from various data sources.
Each data source provides information to independently esti-
mate the likelihood that a pair of genes is functionally related.
These likelihoods are then merged across data sources via the
Bayesian approach. The structure of the Bayesian network and
conditional probability tables are often obtained from domain
experts or inferred from gene ontology (GO) [5]. A related, but
methodologically different unsupervised approach to data inte-
gration was proposed by Tanay et al. [6], where biclustering of
genes and their characteristics led to identification of groups of
genes with correlated behavior across diverse data sources. The
approach proposed in this paper is motivated by consensus clus-
tering [7], a method that originally incorporates resampling to
yield diverse datasets of which clustering is a subject to consen-
sus analysis to find groups of genes that consistently cocluster
across data samples. Consensus clustering increases the stability
of discovered clusters.

Instead of resampling employed in consensus clustering, we
propose to examine gene clusters that are developed from dif-
ferent data sources and different similarity measures. We further
propose an alternative technique for cluster integration, where
we use nonnegative matrix factorization (NMF) [8]. Approaches
based on NMF have become widely accepted for the analysis of
bioinformatics data [9] and useful tools have emerged [10], [11].
NMF has been applied to reduce dimensions in microarray data
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TABLE I
STATISTICAL PROPERTIES OF INFERRED NETWORKS

and infer reduced features-metagenes-that were then used for
clustering and visualization [12]. In another example, Wang
et al. [13] reduced data dimensions by least-squares NMF. The
authors observed improved results when uncertainty measure-
ments of gene expression data were incorporated in the algo-
rithm. Zheng et al. used NMF for clustering cancer gene ex-
pression data [14]. A specific NMF application was reported
by Greene et al. [15], where the authors proposed to ensemble
NMFs of proteins pairwise similarity matrices, each obtained
with different random initialization of the method. In a text min-
ing study, Chagoyen [16] developed a corpus of gene-relevant
documents and relied on NMF to transform the initial high-
dimensional vocabulary space into reduced semantic represen-
tation. Hierarchical clustering was then used to group genes in
the new feature space. Discovered groups were functionally co-
herent, but the authors limited the evaluation to only eight GO
terms.

We here describe the study that proposes data integration
through gene clustering on possibly heterogeneous datasets and
cluster fusion by means of NMF. We show that proposed integra-
tion increases cluster coherence estimated through gene function
enrichment [17]. The clusters discovered through integration are
more representative as they include higher proportion of genes
that share common function. We also diversify input data by con-
sidering various estimates of gene profile similarity. Integrative
approach allows us to better handle noise and other uncertainties
by generalizing across multiple data sources. In our study, gene
clusters are inferred from gene networks [18]–[20], where these
can directly represent the original data (for example, for interac-
tions between genes or between proteins) or can be constructed
from gene profile data applying some profile similarity mea-
sure. For clustering, we use a state-of-the-art network-based al-
gorithm Speed and Performance In Clustering (SPICi) [21] and
two well-known Markov Cluster (MCL) [22] and Affinity Prop-
agation (AP) [23] algorithms. Different clustering algorithms
provided us an opportunity to study their effects on quality of
data fusion. The main contributions of our study include the
proposed data fusion, an algorithm for extracting final clusters
after NMF, and evaluation of proposed data fusion technique
within the scope of functional genomics [24]–[26].

II. DATA

We considered three different datasets on budding yeast
(Saccharomyces cerevisiae) that include a collection of gene ex-

pressions measured at 36 different time points of the metabolic
cycle [24] (YMC), gene interaction data from SGA experiments
[25], and gene expression datasets from the Saccharomyces
Genome Database (SGD)—expression connection [26]. SGA
interaction data profiles 3475 query genes by recording a fit-
ness of a double mutant, where each of the query genes was
knocked-out together with another gene chosen from the set
of 1712 genes. In gene expression data from SGD, we have
merged various SGD data subsets to derive profiles of genes
whose expression was observed under 740 different conditions.
The selected data collections include different sets of genes; we
focused on the subset of 1799 genes that were present in all
three data sources.

III. METHODS

A. Inference of Gene Networks

We inferred gene networks from gene profile similarities
and considered three alternative measures: mutual information,
Pearson correlation coefficient, and Euclidean distance. Each in-
ferred network is an undirected weighted graph G = (V,E,w),
where V is the set of nodes (genes), E ⊆ V × V is the set of
edges, and w are edge weights that refer to estimated similar-
ity. In the case of mutual information and Pearson correlation,
two nodes are connected if the profile similarity between their
corresponding genes is above the 99th percentile of similari-
ties from 10 000 arbitrarily chosen gene pairs from randomly
perturbed data (c.f., [18]). For the Euclidean distance, signifi-
cant edge weights are those below 25th percentile of estimated
null-hypothesis distribution. Initial threshold that selects edges
below the 1st percentile was too restrictive and would result in a
loss of more than half of networks nodes that became singletons
after thresholding.

After the thresholding described previously, the resulting
gene networks still include about half a million edges and are
too dense for identification of groups by graph-based clustering.
Hence, we have additionally removed the edges by retaining at
most 100 highest scored edges for each gene. The choice of
this threshold was inspired from results of the studies of yeasts
coexpression networks in [27] and [28] which exhibit small-
world and scale-free typologies with high modularity. The de-
grees of our resulting metabolic, expression, and SGA networks
along with the other main properties of inferred graphs are re-
ported in Table I. Analysis was carried out with the network
analyzer [29] plug-in for the Cytoscape [30]. These properties
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are similar to those of the coexpression networks from [28]
where clustering coefficient was 0.2 and diameter was 3, and
are similar to properties of the networks from [27], where the
average node degree was 73.4.

B. Clustering Algorithms

The SPICi [21] network clustering algorithm searches for
highly connected regions in the network and uses a greedy
heuristic approach. It calculates the density of the subnetwork
S ⊂ G as the sum of the weights of all edges in S divided by the
total number of possible edges that would be present in a com-
plete subgraph. Another measure used in SPICi is node support
provided by a subnetwork S, which is defined as the sum of
the weights of edges that are incident to nodes in S. The algo-
rithm starts with nodes of the highest weighted edge and grows
the cluster based on two parameters: Ts—the support threshold
and Td—the density threshold. The number of clusters is de-
termined by the algorithm. After clustering, some nodes remain
as singleton clusters due to their relatively low similarity with
adjacent nodes and they are discarded at the end of the process.
Our networks were clustered with parameter Ts set to 0.5 and
Td adapted to the network properties. The starting value of Td

was set to 0.5 and was decreased until coverage, expressed as
the ratio between the number of genes included in the clusters
and the total number of genes reached at least 50% of genes.

The MCL [22] algorithm uses random walks and assumes
that longer network paths are more likely to occur for a pair of
associated nodes. The algorithm starts with an adjacency matrix
that represents a weighted graph, where the diagonal elements
are added to include self-loops. The matrix is transformed to
a stochastic transition matrix where each column sums to one.
After this, expansion and inflation operators are applied in it-
erative steps. Expansion corresponds to the power of a matrix
and provides higher step transition probabilities. The inflation
operator takes entry-wise powers with coefficient r and it is
followed by rescaling to keep the matrix stochastic. This opera-
tor emphasizes strong connections and further weakens already
weak ones. Inflation parameter r affects clustering granular-
ity. In our experiments, we start clustering with r set to 2.0. If
the algorithm produced oversized clusters with more than 300
genes, inflation parameter r was increased. For SGA/Mutual in-
formation, SGA/Euclidean, and YMC/Euclidean networks this
parameter was set to 2.0, 2.5, and 4.0, respectively. For all oth-
ers networks, r = 2.2 fulfilled this condition and provided good
quality and coverage of clusters. In the initialization step, self-
loops were assigned to the graph with weights that equal the
maximum weight of incident edges for each node [31]. Com-
pared to the case where the self-loop is left at zero or equal to
the sum of incident weights, this setting produced better results
in terms of the higher gene function enrichment scores.

The third algorithm, AP [23], searches for representative
nodes (so-called exemplars) that provide seeds for clusters.
Seeds are chosen to maximize within-cluster similarities. Nodes
exchange messages on availability and responsibility. Responsi-
bility r(i, k) is sent from nonrepresentative nodes to exemplars
and inform on the suitability of exemplar k for node i, consid-

ering other potential exemplars. Availability a(i, k) is sent from
exemplar k to data point i to inform it on how appropriate it
would be for point i to choose k as its exemplar. Messages trig-
ger actions on choice of cluster membership, and are exchanged
until reaching convergence. The number of exemplars (clusters)
emerges through the use of a clustering algorithm.

C. Integration by NMF

The result of network clustering from different
dataset/similarity measure combinations can be presented
as a matrix of cluster memberships [32], where one dimension
represents genes and the other clusters. Cluster memberships
by SPICi, AP, and MCL are all crisp and the values in the
membership matrix are either 1 or 0, indicating whether a
gene was assigned to a specific cluster. Clustering information
from different data sources were merged by concatenating
membership matrices in the cluster dimension to obtain the
joint cluster membership matrix R = {0, 1}m×n , where m is
the total number of clusters from all clusterings and n is the
number of genes considered. NMF finds an approximation
R ≈ WH , where W and H are two nonnegative factors such
that W ∈ Rm×k and H ∈ Rk×n . Parameter k is a factorization
rank and equals to the desired (target) number of clusters. In
the resulting factorization, the matrix W contains encoding
coefficients while rows of H are the basis vectors that can
be interpreted as (continuous) memberships to target clusters
discovered by factorization.

NMF used an algorithm with multiplicative updates [33].
Since our input matrix is sparse, multiplicative updates also
provide sparse solutions and there is no need to include reg-
ularization into the process of factorization. Values of H and
W are iteratively updated [(1) and (2)] by multiplying the cur-
rent values with the factors that depend on the quality of the
approximation R ≈ WH

H ← H. ∗
((

WT R
)
./

(
WT WH

))
(1)

W ← W. ∗
((

RHT
)
./

(
WHHT

))
. (2)

Under the multiplicative updates, approximation of R improves
monotonically in the Frobenius norm of the reconstruction error

‖R − WH‖2
F =

∑

i

∑

j

[Rij − (WH)ij ]2 . (3)

The optimization starts with matrices W and H computed by
nonnegative double singular value decomposition (NNDSVD)
[34], speeding up the convergence of the optimization and sup-
porting the reproducibility of the results.

The cluster reconstruction process involves setting the thresh-
old on gene cluster memberships. Fig. 1 illustrates NMF de-
composition of an example cluster membership matrix. For
thresholding, we implement a scaling procedure described be-
low. Namely, the results of NMF are not necessarily unique.
There may exist nonsingular matrices D ∈ Rk×k that satisfy
WD ≥ 0 and D−1H ≥ 0, and we can rewrite factorization as

WH = WDD−1H = W ∗H∗. (4)
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Fig. 1. Example of NMF decomposition. The original matrix with crisp memberships to four clusters R is transformed to new membership matrix H with three
clusters and fuzzy memberships.

The matrix D can perform transformations such as scaling or
permutation. Difficulty in determination of new clusters comes
from a scale variance. Instead of factorization presented in Fig. 1
which results in a pair of coefficients w3,3 = 2.10 and h3,5 =
0.47, NMF can also result in w3,3 = 1.82 and h3,5 = 0.54 (other
values in W and H are also changed). Therefore, it would not
be appropriate to assign an absolute threshold value for creation
of new clusters. In order to eliminate encoding variations, we
rescaled the columns of the encoding matrix W and rows of the
basis matrix H , and use the following two diagonal matrices
DW and DH

DW = diag([max(w:,1),max(w:,2) . . . max(w:,k )]) (5)

DH = diag([max(h1,:),max(h2,:) . . . max(hk,:)]). (6)

Part of the procedure used in binary matrix factorization [35]
was suitable for rescaling obtained W and H . For matrices DW

and DH , the following relations hold:

DW = D
1/2
W D

1/2
W DH = D

1/2
H D

1/2
H

D−1
W = D

−1/2
W D

−1/2
W D−1

H = D
−1/2
H D

−1/2
H (7)

R̃ = WH = (WD−1
W )(DW DH )(D−1

H H)

= (WD
−1/2
W D

1/2
H )(D−1/2

H D
1/2
W H). (8)

From (8), the rescaling matrix D can be expressed as D =
D

−1/2
W D

1/2
H :

W ∗ = WD
−1/2
W D

1/2
H H∗ = D

−1/2
H D

1/2
W H. (9)

Transformations of W and H into W ∗ and H∗ keep product
WH unchanged, but ensure that values in the encoding and
basis matrices are comparable and can be interpreted. Each
element of W and H is rescaled in the following manner:

w∗
i,k = wi,k

√
max(hk,:)
max(w:,k )

=
wi,k

max(w:,k )

√
max(w:,k )max(hk,:) (10)

h∗
k,j = hk,j

√
max(w:,k )
max(hk,:)

=
hk,j

max(hk,:)

√
max(hk,:)max(w:,k ). (11)

We infer the membership to k new clusters from coefficients
in W ∗ and H∗ in either overlapping or exclusive manner. In
overlapping clustering, genes may belong to more than one
cluster, while in exclusive clustering, each gene is assigned only
to one, most likely cluster. Overlapping clustering assigns genes
to clusters according to their membership coefficients in H∗,
but only if the membership exceeds the threshold of 0.5. For
exclusive clustering, additional ranking is used that takes into
account the importance of a gene within cluster and strength of
cluster. Importance is derived from H∗ and strength from W ∗.
The ranking algorithm can be summarized by the pseudocode
given in Algorithm 1.

Factorization of the input matrix R is iterative and runs for 500
iterations. This is also the number of iterations that is required to



702 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 19, NO. 2, MARCH 2015

TABLE II
PROPERTIES OF INDIVIDUAL NETWORK-BASED CLUSTERINGS (INPUTS TO INTEGRATION)

reach a stable result in terms of a clustering structure in number
of clusters and involved genes.

D. Cluster Scoring

Any useful clustering should infer gene groups that are co-
herent in terms of the gene function or any other observed gene
properties. To test this aspect of the method, we use gene anno-
tations from GO [5] and focus on its 92 yeast slim terms that
represent the major branches of the GO. We assume that the
quality of the cluster is associated with the enrichment of a sub-
set of slim terms in the annotations of genes from the clusters.
Term enrichment, expressed through a p-value, was computed
with a hypergeometric test that assesses the probability that, for
a particular GO term, the abundance of term-annotated genes
in the cluster is not the result of chance. Intuitively, the clusters
with no enriched terms are not useful for function prediction
and hence are of poor quality. In general, good clusters may
have several slim terms that are enriched. Improvements in the
clustering algorithm should yield clusters with increased pro-
portion of genes that share common function, and thus exhibit
higher function enrichment scores [17]. We therefore score the
clusters by averaging −log(enrichment p-value) of the three
most-enriched slim terms.

IV. EXPERIMENTAL STUDY AND DISCUSSION

This section provides in-depth view on different integration
scenarios. The properties of individual clustering used in inte-
grations are outlined in Table II and include number of clusters
and cover the ratio between clustered and total number of genes.
We first describe experiments with this set of input clusterings.
Later, we evaluate the method on the larger set created by al-
tering the parameters that affect clustering properties. In the
experiments, we have varied the factorization rank k accord-
ing to the average number of clusters inferred by individual
clusterings that participate in the integration (see bottom row of
Table II). We then used k ∈ {150, 200, 250, 300, 350} for SPICi
and k ∈ {100, 150, 200, 250, 300} for the other two methods.
In this way, we could test the effectiveness of representing new
clusters by virtue of merging, splitting, and combining input
clusters.

A. Partial Integration Across Datasets or Across Different
Network-Specific Similarity Scores

We integrated either a single input dataset where the clus-
tering was inferred from similarity networks obtained with ap-
plication of three different similarity measures or integrated
three different datasets where a single similarity measure was
considered. Experimental results of these six integration sce-
narios are summarized in Fig. 2 and corresponding coverages
of integrative clusterings can be followed in Fig. 3. The results
demonstrate that integration improves enrichment, as we al-
ways observe higher scores for the clusterings after integration.
The results also suggest that the efficiency of integrative clus-
tering can be boosted not only by considering the integration
of different sources of data, but also by considering different
measures of similarity. Comparison with baseline enrichment
derived from clustering with the same structure of clusters but
arbitrary association of gene cluster membership demonstrates
that improvement from initial clustering is truly due to integra-
tion and appropriate assignment of genes to the clusters, and is
not obtained just by changing the size and number of clusters.

B. Integration of Complete Set of Input Clusterings

In the next experiment, we tested the effectiveness of in-
tegrating the entire set of nine clusterings where all datasets
and all similarity measures were involved. This integration
[see Fig. 4(a)] improves the results over previous models of
integration. NMF grouped genes into clusters with an average
enrichment score from 6.15 to 8.11 for overlapping clustering,
and from 4.91 to 6.19 for exclusive clustering. That is sig-
nificantly higher than the coherence in original clusters since
the best clustering that was involved in this integration (SGD
dataset, Euclidean measure) has an enrichment score of 4.99.
Integrated clusters have higher gene function coherence than
clusters that served as an input to the integration.

We further tested the behavior of the proposed data fusion
with two other clustering algorithms, MCL and AP. Again,
clustering was carried out on networks inferred from all three
datasets, where we used each of the three similarity measures.
The results [see Fig. 4(b) and (c)] demonstrate better perfor-
mance of overlapping representative clusters compared to all
individual clusterings for both MCL and AP. In the case of
MCL, the quality of exclusive representative clusters outper-
forms all individual clusterings when k is set to 100 and 150,
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Fig. 2. Comparison of clustering results before and after the integration. The bar charts present the average enrichment scores of SPICi clusters (before the
integration), and the line graphs present the enrichment scores after the NMF integration with both overlapping and exclusive clusters at five granularity levels (k).
Each panel shows result for specific integration scenario. (a) YMC data × three measures. (b) SGA data × three measures. (c) SGD data × three measures. (d)
Three datasets × Pearson correlation. (e) Three datasets × mutual information. (f) Three datasets × Euclidean distance. In all cases, the NMF integration results
in increased enrichment scores and with improved quality of clusters. The enrichment scores are compared to the baseline scores (diamond symbol on bars and
dashed lines) inferred from clustering with random assignment of genes to the clusters. The graphs provide baseline scores for clustering before integration (bar
charts) and for overlapping NMF clustering (line charts); the baseline scores for exclusive clustering were slightly lower and are not shown.

and it is at the level of the best used in integration when k is
200. When we increase granularity (250 and 300 clusters), the
integrative approach performs slightly worse, with enrichment
scores that are still higher than in seven out of nine individual
clusterings. In the case of AP, our method is able to successfully
transform input clusters in 100 and 150 exclusive representa-
tive clusters. If we additionally increase granularity when cre-
ating representative clusters, the quality of the resulting system
declines.

C. Choice of the Number of Clusters With Respect to its Effect
on Average Accuracy and Gene Coverage

Both average enrichment and gene coverage depend on the
choice of the number of output clusters k. Results suggest that
both scores improve after integration. For instance, the average
number of input SPICi clusters was 247 with gene coverage of
0.77 (see Table II, bottom row). At similar number of clusters
(k = 250), the integration—especially the one with overlapping
clusters—improves the average enrichment score (see Fig. 2) but
has also higher coverage (see Fig. 3).

To further study this twofold benefit of integration and isolate
its dependence on number of clusters, we altered the parameters
of our network clustering methods that provide for initial clus-
tering. Our aim was to infer a cluster sets with specific number
of input clusters, and then output the same number of clus-

Fig. 3. Coverage of genes as a function of the number of output clusters k.
The figure reports on the coverage of overlapping (left) and exclusive NMF
clusters (right) from six experiments presented in Fig. 2. Letters on the lines in
the graph (from a to f) refer to panels with different integrations scenarios from
Fig. 2.

ters after the integration. SPICi (k = 150) and MCL (k = 100)
clustering were considered, as AP clustering is parameter-free.
Shrinking the number of clusters when compared to our previ-
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Fig. 4. NMF integration of nine clusterings by (a) SPICi, (b) MCL, and (c) AP
clusterings (three datasets × three measures). In graphs on the left, we report
on average enrichment scores for clusterings that participate in the integration,
and the right part presents average enrichment scores after NMF integration
produced at five different granularity levels. Higher enrichment scores indicate
better functional coherence of clusters. The enrichment scores after integra-
tion are also consistently above the baseline obtained by evaluating random
clusterings of the same clustering structure.

ous experiments (see Table II) slightly improved enrichment for
MCL clusters, but had a mixed effect on SPICi-based clusters.
The average enrichment score in a set of SPICi-inferred clusters
was 4.56 with best individual clustering scoring 5.08 at 0.95
coverage. Integration increased both the coverage to 0.97 and
average enrichment score to 5.56 for exclusive, and to coverage
of 0.99 and enrichment of 7.93 for overlapping clustering. The
average score in a set of clusters by MCL was 5.43 with best
individual clustering scoring 6.77 at 0.96 coverage, while NMF
again increased the coverage and enrichment to 0.99 and 7.97
for exclusive and to 1.00 and 9.65 for overlapping clustering,

respectively. This set of experiments further confirms the util-
ity of integration by increasing both average enrichment and
coverage. We have obtained qualitatively similar results with
cluster reduction by pruning of the smallest clusters in the input
clusterings (results not presented for brevity).

The number of clusters k after the integration is a user-
specified parameter. When k is small, the effect of integration is
stronger, while for higher values of k the initial clusters may be
split to smaller ones. The choice of parameter k involves con-
sidering the tradeoff between enrichment scores and coverage,
and may depend on the goals of particular application. For an
appropriate starting choice, we recommend setting the number
of clusters to the average number of clusters in the input set of
clusterings. Our experiments suggest that under such setup the
clustering integration already has a positive effect by increasing
both enrichment scores and coverage.

D. Further Insight into the Effects of Cluster Integration

To further demonstrate the inner workings of the proposed
approach, we provide an illustration obtained from our exper-
iment with integration of nine clusterings (three data sets ×
three similarity measures). Fig. 5 shows the part of the input
matrix R considered by NMF. Matrix columns correspond to
genes and rows to clusters. Information on the data source and
corresponding similarity scoring is provided in the last column
of the matrix. In the figure, we provide details on two initial
clusters c1 and c21 (the first and the last row) that are the best
among the 21 presented and compare them with the output
clusters after NMF transformation. For each of the clusters, we
have analyzed the report on the most enriched GO terms. Since
only a subset of genes is shown in the figure, we print in black
the cluster memberships that comprise only the genes present
in the displayed matrix, and in gray those that also comprise
some genes outside the displayed matrix. Notice how NMF
reorganizes clusters. Based on the supported evidence, NMF
prunes initial clusters and creates functionally more consistent
groups. For 33 genes in Fig. 5 assigned to 21 input clusters,
NMF identified two clusters that are related to this particular set
of genes. Genes CAT2, TCB3, YML131W, YNR014W, HXK2,
MTO1, SIS2, and YIR024C were excluded from these clusters
due to obvious lack of supporting evidence. CAT2 shares label
peroxisome—prevailing function assigned to c1, but except that
cluster none of the other input clusters uphold its connection to
genes that remained clustered together after NMF. We have fur-
ther examined other clusters that included CAT2. Interestingly,
this gene was assigned to another group also enriched in perox-
isome, but additionally associated with the cellular amino acid
and the derivative metabolic process. Through other NMF clus-
ters, YML131W was additionally associated with membrane,
HXK2 and MTO1 with cytoplasm and mitochondrion, SIS2
with enzyme regulator activity, and YIR024C with mitochon-
drion. TCB3 was not assigned to any NMF cluster due to small
support, only YNR014W was in cluster which did not con-
tribute to the enrichment score. Output clusters with assigned
functional labels indicate that not only is the NMF approach
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Fig. 5. Integration of information through NMF discovers more meaningful clusters. The figure shows a fragment of the integrated cluster membership matrix.
The black color indicates that the fragment of the matrix encompasses all members of the cluster, and the grey color indicates that the cluster includes other genes
besides those presented. To compare the results, we assigned corresponding enriched functional terms to two input clusters (the best in this example) and to output
clusters (obtained through NMF framework). Improved enrichment values demonstrate the benefits of the integrative approach.

able to identify representatives among input clusters, but also
succeeds in further improving them.

E. On Initialization of the Matrix Factorization Procedure

Although there is no guarantee that NMF with multiplica-
tive updates converges to global optimum, obtained solutions
proved useful and improved clustering results. Through the use
of deterministic initialization by NNDSVD [34], our procedure
always converges to the same solution. Alternatively, we could
use a random initialization of matrices W and H . To examine
the differences with deterministic initialization in terms of qual-
ity of resulting clusters, we ran 50 experiments with random
initialization for six integration scenarios from Fig. 2. Results
(see Fig. 6) indicate that both initialization techniques lead to
data integration of similar quality. In some cases, random ini-
tialization may yield better results and hint at potential utility
of assembling of randomly initialized models. However, con-
sidering substantially increased computational requirements of
such procedure, we therefore prefer a faster, deterministic, and,
as shown in our study, useful initialization by NNDSVD.

F. On Overlapping Versus Nonoverlapping Cluster Integration

Our proposed integrative method consistently performs better
in terms of average enrichment scores when inferring overlap-
ping clusters. This was in part expected as gene annotation
terms in general overlap in coverage of the genes, that is, a par-
ticular gene may be annotated with more than one term. The
problem considered in this paper, that is, finding gene groups
with enriched annotations, is therefore biased and benefits from

Fig. 6. Comparison of matrix factorization initialization by NNDSVD and
random initialization across six different integration scenarios from Fig. 2 and
using five different factorization ranks (k). Initialization by NNDSVD is de-
terministic and using it, our data integration procedure converges to a unique
solution (blue dots). Results of 50 runs of data integration by random initializa-
tion are summarized with box plots.

overlapping clustering. We believe that this is with no loss of
generality, as many problems from natural sciences deal with
objects that are annotated with a set of labels, rather than clas-
sified to a single specific class. Being able to infer overlapping
clusters should thus be considered a major strength of NMF-
based integration. Other studies also indicate that overlapping
clustering better address problems in various fields of molecular
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Fig. 7. Comparison of clustering integration approaches for initial clustering by (a) SPICi, (b) MLC, and (c) AP. Box plots refer to the baseline approach (no
integration, the first box plot in each panel), early integration (EARLY), late integration by NMF (NMF-O for overlapping and NMF-E for exclusive clustering),
and consensus clustering (CONS-O for overlapping and CONS-E for exclusive clustering). The length of a box is the interquartile range of the enrichment score
distribution, the line across the box represents the median, and the mean is denoted with a star symbol.

biology, such as those investigating protein complexes [36], [37]
and biological processes [38].

V. COMPARISON WITH OTHER DATA INTEGRATION

TECHNIQUES

Our proposed approach belongs to the late integration type
of ensemble techniques, where aggregation is performed af-
ter individual clusterings have already been formed. We have
compared our method to well-known late integration approach
of consensus clustering [7]. Originally proposed for integra-
tion of different clusterings obtained from samples of the same
datasets, consensus clustering may also be used when different
cluster models stem from different datasets or from different
preprocessing steps, as in our case. Consensus clustering inte-
grates cluster memberships into a consensus matrix that can be
viewed as a similarity matrix and postprocessed through addi-
tional methods to obtain final clusters. We used kernel k-means
to create exclusive consensus clusters and its soft version to de-
tect overlapping clusters [39]. Soft kernel k-means assigns genes
to clusters based on distances to cluster centers. The number of
clusters was set to the same level as in the proposed NMF-based
integration. The evaluation score for consensus integration in
each experiment is averaged across ten runs due to random ini-
tialization of kernel k-means.

A different type of data fusion is an early aggregation, where
data are fused before the application of a clustering algorithm by
merging gene profiles or by aggregation of similarity matrices
[40]. To compare our approach to this technique, we merged
gene profiles before clustering and then independently inferred
gene similarity networks with all three measures and finally ran
individual clustering.

To compare various integration approaches, we have first es-
tablished a collection of different gene networks. We have con-
sidered all nine combinations of three datasets and three sim-

ilarity measures. To additionally diversify the networks, these
were pruned so that each node included a maximum of t edges,
where t ∈ {80, 85, . . . 125}. Notice that in the previous exper-
iments, this parameter was fixed to 100. In this way, we have
obtained 90 different networks. For the case of early integration,
where the dataset where first merged, the number of considered
networks was 30 (three similarity measures, ten choices of t).

Just like in experiments from Fig. 4, we have considered three
different clustering methods (SPICi, MCL, and AP) to obtain the
initial clusters from each of the networks. Fig. 7 reports on the
resulting average enrichment scores for the baseline approach
(no data integration), early integration (EARLY), and late inte-
gration approaches by overlapping and nonoverlapping NMF-
based integration (NMF-O and NMF-E), and overlapping and
nonoverlapping consensus integration (CONS-O and CONS-E).
Box plots in the figure show the average enrichment scores ob-
tained from each of 90 networks for baseline approaches (no
data integration, box plots labeled SPICi, MCL, and AP) and
scores from clusters from each of 30 networks for early integra-
tion. Late integration techniques were run 50 times, each time
on a random sample of nine networks from our collection of 90
networks. For the late integration approaches, box plots in Fig. 7
thus show 50 different average enrichment scores. The number
of output clusters for each run of late integration methods was
set to the average number of clusters in nine-sampled networks.

ANOVA test indicates that significant difference exists among
different methods (p < 10−70 for all experiments within ini-
tial clustering by SPICi, MCL, and AP). Posthoc Tukey test
with 99% confidence reveals groups that are significantly dif-
ferent. For integration of clusters proposed by SPICi [see Fig.
7(a)] the ranking order is (NMF-O, CONS-O, NMF-E, EARLY,
CONS-E, SPICi) with corresponding grouping (A, B, C, C, D,
E). Groups that do not share the same letter are significantly dif-
ferent. Thus, in results from Fig. 7(a), the score distribution for
NMF-O is significantly different than those of other methods,
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while score distributions of NMF-E and EARLY are different to
score distributions of the CONS-E and SPICi but are, between
themselves, not significantly different. For integration of clus-
ters proposed by MCL [see Fig. 7(b)], the ranking is (NMF-O,
CONS-O, NMF-E, EARLY, CONS-E, MCL) with correspond-
ing grouping of (A, A, B, C, D, E), and for the integration
of AP clusters the ranking is (NMF-O, EARLY, NMF-E, AP,
CONS-O, CONS-E) with grouping of (A, B, C, D, E, F). Notice
that all types of integration surpasses the clustering where no in-
tegration took place, except in experiments with AP where both
type of CONS lose in performance. For all three types of initial
clustering, the best results are achieved by overlapping type of
NMF integrative clustering. Scores for NMF-E are higher to
those for CONS-E. EARLY integration performs comparatively
well, but its score depends on an appropriate choice of similarity
measure that, in our experience, is the parameter causing high
variance in performance of this approach.

VI. CONCLUSION

Clustering that infers gene groups from their profiles that can
be gathered from any of the current genome-wide experimental
techniques is currently one of the most common computational
tools in functional genomics. While other more focused and spe-
cialized computational approaches exist that could manifest bet-
ter accuracy by learning from class-labeled data [41], clustering
is still the prevailing technique for preliminary and explorative
analysis of experimental data in systems biology. Furthermore,
gains in the quality of discovered clusters may stem from data
integration, as different data sources may provide different but
complementary insight into the observed system. In this paper,
we have proposed an integration method that can fuse clusterings
stemming from different datasets, different data preprocessing
steps, or different clustering techniques. The approach based on
NMF is robust and can infer gene groups with high-functional
enrichment and improved gene coverage. Our proposed method
is general and compares favorably to alternative integration ap-
proaches.
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learning in bioinformatics,” Briefings Bioinformat., vol. 7, no. 1, pp. 86–
112, 2006.

Sanja Brdar received the M.Sc. degree in electri-
cal and computer engineering from the University of
Novi Sad, Novi Sad, Serbia, in 2007, where she is
currently working toward the Ph.D. degree.

She spent two years working in the software indus-
try with major in databases design and development.
She is also a Researcher at the Faculty of Technical
Sciences, University of Novi Sad, where she par-
ticipates in projects within the BioSense multidisci-
plinary center. In 2010, she was awarded a 10-month
Basileus fellowship and spent it visiting Bioinformat-

ics Laboratory at University of Ljubljana. Her main research interests encompass
machine learning and data mining with applications in biology, agriculture, and
environmental science.
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