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Imperial College London, London, SW7 2AZ, United Kingdom, 3Computational Biology, GlaxoSmithKline, Stevenage,
Hertfordshire, SG1 2NY, United Kingdom, 4Department of Molecular and Human Genetics, Baylor College of Medicine, Houston,
TX, USA.

The advent of genome-scale genetic and genomic studies allows new insight into disease classification.
Recently, a shift was made from linking diseases simply based on their shared genes towards systems-level
integration of molecular data. Here, we aim to find relationships between diseases based on evidence from
fusing all available molecular interaction and ontology data. We propose a multi-level hierarchy of disease
classes that significantly overlaps with existing disease classification. In it, we find 14 disease-disease
associations currently not present in Disease Ontology and provide evidence for their relationships through
comorbidity data and literature curation. Interestingly, even though the number of known human genetic
interactions is currently very small, we find they are the most important predictor of a link between diseases.
Finally, we show that omission of any one of the included data sources reduces prediction quality, further
highlighting the importance in the paradigm shift towards systems-level data fusion.

D
isease Ontology (DO)1 is a well established classification and ontology of human diseases. It integrates
disease nomenclature through inclusion and cross mapping of disease-specific terms and identifiers from
Medical Subject Headings (MeSH)2, World Health Organization (WHO) International Classification of

Diseases (ICD)3, Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT)4, National Cancer
Institute (NCI) thesaurus5 and Online Mendelian Inheritance in Man (OMIM)6. It relates and classifies human
diseases based on pathological analysis and clinical symptoms. However, the growing number of heterogeneous
genomic, proteomic, transcriptomic and metabolic data currently does not contribute to this classification.
Understanding of even the most straightforward monogenic classic Mendelian disorders is limited without
considering interactions between mutations and biochemical and physiological characteristics. Hence, redefining
human disease classification to include evidence from heterogeneous data is expected to improve prognosis and
response to therapy7. In this paper we examine whether inclusion of modern molecular level data can improve
disease classification.

Several studies have reported on efforts and benefits of relating human diseases through their molecular causes.
Loscalzo et al.7 catalogued diseases through a network-based analysis of associations among genes, proteins,
metabolites, intermediate phenotype and environmental factors that influence pathophenotype. Gulbahce et al.8

constructed a ‘‘viral disease network’’ of disease associations to decipher the interplay between viruses and disease
phenotypes. They uncovered several diseases that have not previously been associated with infection by the
corresponding viruses. A similar approach was used by Lee et al.9 to gain insights into disease relationships
through a network derived from metabolic data instead of virological implications. They demonstrated that
known metabolic coupling between enzyme-associated diseases reveal comorbidity patterns between diseases in
patients. Goh et al.10 studied the position of disease genes within the human interactome in order to predict new
cancer-related genes. Conversely, a gene-centric approach to disease association discovery was used by Linghu
et al.11: they took 110 diseases for which a set of disease genes are known, and compared gene sets and their
positions within the gene network to infer associations of related diseases. More details can be found in two recent
surveys of current network analysis methods aimed at giving insights into human disease12,13, as well as in a review
of different data sources that can provide complementary disease-relevant information14.

A challenge in relating diseases and molecular data is in the multitude of information sources. Disease profiling
may include data from genetics, genomics, transcriptomics, metabolomics or any other omics, all potentially
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related to susceptibility, progress and manifestation of disease. Such
data may be related on their own: for example, information on tran-
scription factor binding sites, gene and protein interactions, drug-
target associations, various ontologies and other less-structured
knowledge bases, such as literature repositories, are all inter-depend-
ent and it is not trivial to integrate them in a way that will yield new
information about diseases. This stresses the need for an integrated
approach of current models to exploit all these heterogeneous data
simultaneously when inferring new associations between diseases13.

Data from heterogeneous sources of information can be integrated
by data fusion15. Common fusion approaches follow early or late
integration strategies, combining inputs16 or predictions17, respect-
ively. Another and often preferred approach is an intermediate integ-
ration, which preserves the structure of the data while inferring a

single model18–20. An excellent example of intermediate integration is
multiple kernel learning that convexly combines several kernel mat-
rices constructed from available data sources15,21. Data fusion has
been successfully applied for tasks such as gene prioritisation15,21,22,
or gene network reconstruction and function prediction16,23. To our
knowledge, we present the first application of data fusion to disease
association mining.

We choose the intermediate data fusion approach for its accuracy
of inferring prediction models (i.e. how well a model can learn to
predict disease-disease associations) and the ability to explicitly mea-
sure the contribution of each data set to the extracted knowledge18,19.
Kernel-based fusion can only use data sources expressed in the ‘‘dis-
ease space’’, i.e. all data sources have to be expressed as kernel mat-
rices encoding relationships between diseases, which may incur loss

Figure 1 | Data fusion. Panel A is a graphical representation of our data fusion by matrix factorisation approach to discovering disease-disease
associations. The shown block-based matrix representation exactly corresponds to the data fusion schema in Figure 3-A. We combine 11 data sources on
four different types of objects (see Methods): drugs, genes, Disease Ontology (DO) terms and Gene Ontology (GO) terms. These data are encoded in two
types of matrices: constraint matrices, which relate objects of the same type (such as drugs if they have common adverse effects) and are placed on the main
diagonal (illustrated by matrices with blue entries); and relation matrices, which relate objects of different types and are placed off the main diagonal
(illustrated by matrices with grey entries). Our data fusion approach involves three main steps. First, we construct a block-based matrix representation of
all data sources used in our study (panel A, left). The molecular data encoded in these matrices are sparse, incomplete and noisy (depicted by different
shades of blue and grey) and some matrices are completely missing because associated data sources are not available (e.g. no link between GO terms and
drugs). In the second step, we simultaneously decompose all relation matrices as products of low-rank matrix factors and use constraint matrices to
regularise low-rank approximations of relation matrices. The key idea of our data fusion approach is sharing low-rank matrix factors between relation
matrices that describe objects of common type. The resulting factorised system (panel A, middle) contains matrix factors that are specific to every type of
objects (four matrices in left part; e.g. GDrug), and matrix factors that are specific to every data source (six matrix factors in right part; e.g. SGene, DO Term).
Thus, low-rank matrix factors capture source- and object type-specific patterns. Finally, we use matrix factors to reconstruct relation matrices and
complete their unobserved entries (panel A, right). Panel B shows the algorithm for assigning diseases to classes and obtaining disease-disease association
predictions.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 3202 | DOI: 10.1038/srep03202 2



of information when transforming circumstantial data sources into
appropriate feature space. In our study, most of the data sources are
only indirectly related to diseases, hence we employ an alternative
and recently proposed intermediate data fusion algorithm by matrix
factorisation24, which has an accuracy comparable to kernel-based
fusion approaches, but can treat all data sources directly (i.e. no
transformation of data into ‘‘disease space’’ is necessary). The key
idea of our data fusion approach lies in sharing of low-rank matrix
factors between data sources that describe biological data of the same
type. For instance, genes are one data type which can be linked to
other data types such as Gene Ontology (GO) terms or diseases
through two distinct data sources, namely GO annotations and dis-
ease-gene mapping. The fused factorised system contains matrix
factors that are specific to every molecular data type, as well as matrix
factors that are specific to every data source. Thus, low-rank ma-
trix factors can simultaneously capture both source- and object type-
specific patterns.

We report on the ability of our recently developed data fusion
approach to mine human disease-disease associations. Starting from
Disease Ontology, we revise the links between diseases using related
systems-level data, including protein-protein and genetic interac-
tions, gene co-expressions, metabolic data, drug-target relations,
and other (see Methods). By fusing these data we identify several
disease-disease associations that were not present in Disease Onto-
logy and validate their existence by finding strong support in the
literature and significant comorbidity effects in associated diseases.
We also quantify the contribution of each molecular data source to
the integrated disease-disease association model.

Results
We fuse systems-level molecular data by using our recently deve-
loped matrix-factorisation approach (described in Methods) to gain
new insight into the current state-of-the-art human disease clas-
sification. This large-scale data integration results in 108 highly reli-
able disease classes (each corresponding to a clique in the consensus
matrix, !C; see Methods section and Algorithm in Figure 1-B). Size
distribution of the 108 disease classes is as follows: 60 disease classes
contain 2 diseases; 31 disease classes contain 3 or 4 diseases; 9 disease
classes contain 5, 6 or 7 diseases; 5 disease classes contain 8, 9 or 10
diseases; 2 disease classes contain 11 or 17 diseases; and 1 disease
class contains 146 diseases. For each class we examine the associa-
tions between its member diseases to inspect how the obtained
classes align with currently accepted disease classification.

Using Disease Ontology (DO) and literature curation, we find that
the 107 smaller classes successfully capture closely-related diseases
that are also placed near each other in DO (see below for details).
Also, we find that in the largest identified disease class (i.e. the one
containing 146 diseases), the most represented major disease is can-
cer (31.5%), followed by nervous system diseases (14.4%), inherited
metabolic disorders (9.6%) and immune system diseases (5.5%). This
class primarily contains diseases of anatomical entity (45.2%), cel-
lular proliferation (25.4%) and metabolic diseases (14.3%), with
other major concepts of DO being rarely represented. The large size
of this class may reflect the following underlying biases in various
data sources – its constituents represent either larger majority groups
in DO, or minority groups at a lower level of ontology:

. diseases of anatomical entity, because diseases are often described
based on tissue/organ;

. cellular proliferation, because of the heavy enrichment of cancers
and the sub-classification of these into many variant diseases, also
possibly driven by rich gene/pathway annotation around cell
cycle and proliferation;

. metabolic diseases, because of significant representation of meta-
bolic diseases and significant understanding of metabolic path-
ways. Metabolic disease is a primary focus for systems modelling

and simulation, as much is known from pathways and a wealth of
omics data available.

Since the obtained distribution appears unbalanced due to one
large class containing 146 diseases, we further decompose that class
by repeating data fusion analysis on its disease members. This effec-
tively gives us a multi-layer hierarchical breakdown of disease classes
(see Figure 2). The large class is broken down into 10 classes (only
those observed in all 15 inferred models are taken into account; see
Methods section). The distribution of disease class sizes is: 9 disease
classes with 2 or 3 diseases, and 1 disease class with 51 diseases. The
diseases captured by the 9 smaller classes are: two classes consist of
cancer diseases, three consist of inherited metabolic disorders, one
contains nervous system diseases, two contain respiratory system
diseases, and the last one has cardiovascular system diseases. The
largest disease class (containing 51 disease members) is further
decomposed into 8 disease classes. The distribution of disease class
sizes at this level of hierarchy is: 7 disease classes with 2 or 3 diseases,
and 1 disease class with 18 diseases. The diseases captured by the 7
smaller classes are: two classes with immune system diseases, one
class with cognitive disorders, one class with acquired metabolic
diseases, one with cancer, and the last three were split between cog-
nitive disorders and metabolic diseases. The largest class (containing
18 disease members; again, under the most stringent agreement
threshold; see Methods) is finally decomposed into six conserved
diseases (the remaining 12 diseases grouped less reliably under our
stringent threshold): lung metastasis, dysgerminoma, serous cysta-
denoma (cellular proliferation and cancer), abetalipoproteinemia
(metabolic disorder), related factor XIII deficiency and plasmodium
falciparum malaria.

Diseases in captured classes exhibit significant comorbidity. A
comorbidity relationship exists between diseases whenever they
affect the same individual substantially more than expected by
chance. We want to know whether diseases assigned to the same
disease class by our data fusion method exhibit higher comorbidity
than diseases assigned to different classes. Hidalgo et al.25 proposed
two comorbidity measures (http://barabasilab.neu.edu/projects/
hudine) to quantify the distance between two diseases: a relative
risk (defined below) and Pearson’s correlation between prevalences
of two diseases (w). A relative risk (RR) of two diseases is defined as
the fraction between the number of patients diagnosed with both
diseases and random expectation based on disease prevalence.
Expressing the strength of comorbidity is difficult because different
statistical distance measures are biased to under- or over-estimating
the relationships between rare and prevalent diseases. The RR
overestimates associations between rare diseases and underesti-
mates associations involving highly prevalent diseases, whereas w
has low values for diseases with extremely different prevalence, but
is good at recognising comorbidities between disease pairs of similar
prevalence.

We find that 66 (out of 107) disease classes have a significantly
higher comorbidity than what would be expected by chance (p-value
, 0.001 with Bonferroni multiple comparison correction applied to
all p-values). We assess the statistical significance by randomly sam-
pling disease sets of the same size as the disease class in question, and
computing the comorbidity enrichment scores of the sampled sets
according to the two comorbidity measures, RR and w, as proposed
by Hidalgo et al.5. The enrichment score is then computed as the
mean of comorbidity values between all disease pairs in a disease
class. For subsequent layers of hierarchical decomposition of the
largest disease class (i.e. the one containing 146 diseases), we find
that: 7 out of 10 first level disease classes have a significantly higher
comorbidity (measured by both RR and w) than what would be
expected by chance; comorbidity data was available for only 3 out
of 8 second-level disease classes, and 2 of them exhibited significantly
higher comorbidity than what would be expected by chance.
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Evaluating disease classes through Disease Ontology. To see how
well our fusion approach captures disease-disease associations
already present in the semantic structure of DO, we look at the
overlap between 107 disease classes (again, we perform enrichment
analysis of the largest above-described class separately, see below)
and find that 79 classes have at least 80% of disease members directly
connected in DO via is_a relationship; an example of one such
disease class is given in Figure 3-B. We assess the statistical
significance of such a high number of classes being enriched in
known relations from DO by computing the p-value as follows.
First, we remove all DO-related information (i.e. we remove the
constraint matrix H2; see Methods) and then we perform the data
fusion again without any prior information on relationships between
diseases. We find that such a high number of classes is unlikely to be
enriched in known relations from DO by chance (p-value , 0.001).

This result is very interesting as it indicates that DO could, in
principle, be reconstructed from molecular data only. Our findings
suggest that disease classification derived from pathological analysis
and clinical symptoms (DO) can be largely reproduced by consider-
ing only molecular data. In other words, data fusion of different types
of evidence could be used to infer a hierarchy of disease relations
whose coverage and power might be very similar to those of the
manually curated DO.

The decomposition of the largest disease class yields similar
results: 5 out of 9 first-level classes have their members directly linked
in DO via is_a relationships; 4 out of 7 second-level disease classes
have their members directly linked in DO via is_a relationships; the
third-level class of size six does not significantly overlap with the DO
graph, but is partially supported by literature26.

Finding new links between diseases. In addition to examining
classes of multiple diseases, we can use our fused model to rank
individual disease-disease associations based on supporting

molecular evidence, and make novel predictions linking previously
seemingly unrelated diseases. Among all the highest-ranked disease-
disease associations in the fused model (i.e. disease pairs from the
most stable classes – obtained in step 3 of Algorithm in Figure 1-B –
with less than 6 disease members), we find 14 associations not
recorded in Disease Ontology. We perform literature curation and
find evidence for all 14 of the predicted disease associations (Table 2).
Such high accuracy is due to our choice to take a highly stringent
approach that requests the association to be observed in all 15 of the
inferred models (see Methods for details). Comorbidity data were
available for 4 out of 14 predicted disease associations and all 4 of
these disease-disease associations were found to have significantly
high comorbidity: (DOID:11198, DOID:12336), (DOID:12252, DOID:
8543), (DOID:423, DOID:13166), and (DOID:11202, DOID:11335).

Contribution of each data source to the fused model. We have seen
that data fusion can successfully retrieve existing and uncover new
associations between diseases. Now we examine the contribution of
each individual data source to the final disease-disease association
model. We estimate the relative importance of each of the fused data
sources in predicting disease associations by comparing the quality of
the inferred model that includes the data source, to the quality of the
model that excludes it. The measured quality is represented by a tuple
of residual sum of squares (RSS; lower values are better) and
explained variance (Evar; higher values are better; see24 for details)
of gene-disease relationship matrix R12 (see Methods). So an increase
in RSS and a decrease in Evar hinder the quality of the inferred
model, and conversely, a decrease in RSS and an increase in Evar
improve the quality of the inferred model. We find that omission of
each of the five data sources that specify interactions between genes
(H 1ð Þ

1 , . . . , H
5ð Þ

1 ) reduces the overall quality of the model. Sur-
prisingly, the largest model degradation is observed in the absence
of genetic interactions when Evar drops by 9.5% and RSS increases by

. . . 6
abetalipoproteinemia, 
lung metastasis
dysgerminoma
serous cystadenoma
factor XIII deficiency
Plasmodium falciparum malaria

Level 3

immune system diseases
cognitive disorders
acquired metabolic diseases
metabolic diseases
cancer

18
pulpitis
periodontitis

Level 2

cancer
inherited metabolic disorders
nervous system diseases
respiratory system diseases
cardiovascular system disease

51
bile duct disease
hemolytic-uremic syndrome

Level 1

Largest 
disease class

146 Hodgkin’s lymphoma
Cushing’s syndrome

gastric lymphoma
crescentic glomerulonephritis

. . . . . .Root layer

a single disease

two diseases

three or more diseases

eighteen diseases18

Disease class size:

Figure 2 | Multi-layered hierarchical decomposition of disease classes. Our analysis yields 108 disease classes using the most stringent threshold for
predicting disease-disease associations. Identified classes are rather small and each class contains at most 17 diseases with the exception of the largest
disease class that consists of 146 diseases (at root layer). We further decompose the largest class by re-running the data fusion process on set of diseases that
are in the largest class in order to identify its fine-grained structure (level one). We repeat data fusion analysis using this top-down strategy two more times
(levels two and three), which results in a hierarchical decomposition of most reliable disease classes (see Methods).
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13.3%. This result is unexpected, because the number of available
genetic interactions is small (511). This may confirm the proposed
importance of genetic interactions and functional buffering as being
critical for understanding disease evolution and for design of new
therapeutic approaches27. Although the dataset of genetic interac-
tions is currently small, the observed interactions are more likely
to be causative as opposed to correlative and may therefore have
less noise associated, hence they appear to be more informative
and have a larger importance on relationships between diseases
than other data sources. Exclusion of other sources results in a
smaller decrease in quality (Table 3), but nevertheless, these results
confirm that all of the fused data sources contribute to the quality of
the model.

Discussion
We integrate a wide range of modern systems-level molecular inter-
action and ontology data using our recently proposed data-fusion
approach, and apply it to finding relationships between diseases
previously unrecorded in DO. We validate our findings through
comorbidity data and literature curation to demonstrate that such
a systems-level integration can recover known and successfully
identify currently unrecorded relationships between diseases.

When searching for disease-disease associations not present in
DO, we considered only those associations that are present in all of
the inferred models. This conservative approach gave us 14 disease-
disease association predictions which we validated through literature
and comorbidity data. Relaxing the threshold of association to be
predicted, i.e. requiring a disease-disease association to be present in
95%, 90%, 85% or fewer of inferred models yields a higher number of
predicted disease associations. For instance, we found 89 associations
unrecorded by DO when requiring them to be present in at least 80%
of the models. Exploring the effects of lowering this threshold
remains a subject of future research, as we were able to demonstrate
our goal to find potentially useful associations using the most
stringent threshold. Specifically, two of the fourteen predicted dis-
ease-disease associations – between gastric lymphoma and crescentic
glomerulonephritis, and between Cushing’s syndrome and Hodgkin’s
lymphoma – demonstrate the ability of the approach to find inter-
esting novel links, but also highlight the fact that it is not possible to
determine causal from correlative relationships (which, indeed, in

many cases may not be known), given our current scientific under-
standing.

Perhaps even more interesting is the fact that the newly iden-
tified relations between diseases could, in principle, be used to
systematically update and extend DO, or even develop a parallel
data-driven hierarchy of disease relations. Utilising data fusion for
disease re-classification, as well as linking these results with genome-
wide association studies (GWAS) is a subject open to future research.

We show that all available molecular data – regardless of their
sparseness – are important for effective integration. Surprisingly,
we find that genetic interaction data are the most predictive under-
lying factor of disease-disease associations despite their current small
size. The flexibility of our data fusion approach allows us to extend
the model with new data sources or omit some sources of informa-
tion to study their effects on predictive performance. We only require
that the underlying graph of data fusion scheme (Figure 3-A) be
connected. This gives our data fusion algorithm the power to share
latent representations of object types between different data sources.
For instance, we cannot omit data on drug targets (R14 in Figure 3-A)
without also removing data on adverse side-effects of drug combina-
tions (H4). Thus, we report in Results on the quality of all models that
exclude any reasonable first-order combination of data sources and
use these data to estimate contributions of data sources to the quality
of the fused model.

Since our data fusion approach is a semi-supervised learning
method, it is less prone to over-fitting than supervised methods, i.e.
ones that make distinctions between objects on the basis of predefined
class label information. Additionally, in order to avoid over-fitting, we
selected data fusion parameters through internal cross-validation and
used constraint matrices – which express the notion that a pair of
similar objects of the same type, such as a pair of drugs or a pair of
diseases, should be close in their latent component space – to impose
penalties on matrix factors. Thus, the observed reduction in model
quality when any one of the included data sets is omitted is caused by
the exclusion of complementary information provided by the data set
rather than by the lack of robustness of the model.

We have seen the role of data fusion in successful retrieval of
existing and uncovering of novel links between diseases. Future
improvements of such a comprehensive integration of molecular
data would allow better understanding of underlying mechanisms

Figure 3 | System-level data fusion approach to disease re-classification. Panel A shows the relationships between data sources: nodes represent four
types of objects, i.e. genes, GO terms, DO terms and drugs; arcs denote data sources that relate objects of different types (relation matrices, Rij, i ? j), or
objects of the same type (constraints, Hi). Panel B shows a disease class predicted by data fusion overlaid with a DO graph. Members of the disease
class are outlined. This illustrates the ability of data fusion to successfully capture real disease classes: diseases associated with crescentic
glomerulonephritis are presented.
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that drive diseases and would, in turn, improve choice of medical
therapy.

Methods
Data sources. In this study, we integrate biological data on objects of four
different types (nodes in Figure 3-A): genes, diseases (Disease Ontology terms),
drugs, and Gene Ontology (GO) terms. We observe them through 11 sources of
information (edges in Figure 3-A). Every source of information is represented by a
distinct data matrix that either relates objects of two different types (such as drugs
and their associated target proteins) or objects of the same type (such as genetic
interactions between genes): relations between objects of types i and j are
represented by a relation matrix, Rij, and relations between objects of the same
type i are represented by a constraint matrix, Hi. Table 1 summarises all 11 data
sets.

Disease data. The principal source of information on human disease associations
is Disease Ontology (DO)1. DO semantically combines medical and disease
vocabularies and addresses the complexity of disease nomenclature through extensive
cross-mapping of DO terms to standard clinical and medical terminologies of MeSH,
ICD, NCI’s thesaurus, SNOMED and OMIM. It is designed to reflect the current
knowledge of human diseases and their associations with phenotype, environment
and genetics. We extract 1,536 DO terms from the latest version of the disease
ontology hosted by the OBO Foundry (http://www.obofoundry.org) and construct a
binary matrix R12 from 22,084 associations between genes and diseases. DO leverages
the semantic richness through linking terms by computable relationships in the
hierarchy (e.g. mediastinum ganglioneuroblastoma is_a peripheral nervous system
ganglioneuroblastoma, which is_a ganglioneuroblastoma and then in turn is_a
neuroblastoma) first by etiology and then by the affected body system. We use the
semantic structure of DO to reason over is_a relations. Since entries in the constraint
matrices are positive for objects that are not similar and negative for objects that are
similar, the constraint between two DO terms in H2 is set to 20.8hops, where hops is
the length of the path between corresponding terms in DO graph. We empirically
chose 0.8 from [0, 1] range – 0 meaning that no two terms in the DO graph are related,
and 1 meaning that two DO terms are always related (regardless of the path distance
between them in the DO graph) – by performing standardised internal cross-valid-
ation using values between 0 and 1 with a 0.1 step (i.e. 0, 0.1, 0.2, …, 1). Scores of
multiple parentage (multiple is_a relationships) are summed to produce the final
value of semantic association. Throughout the paper, we use disease and DO term
interchangeably, which both refer to a unique DO identifier (DOID).

Gene ontology data. We use relations between 11,853 distinct genes and 100,685 gene
annotations that are given by Gene Ontology (GO)28 to construct a binary matrix of
direct annotations R13. Topology of the GO graph is included by reasoning over is_a,
part_of and has_part relations between GO terms to populate H3 in the same way as
H2 with the constraint between two GO terms set to 20.9hops.

Drug data. We obtain drug data from DrugCard entries in the DrugBank (http://
www.drugbank.ca) database that contains chemical, pharmacological and phar-
maceutical drug information with comprehensive drug target details. Our model
contains 4,477 distinct drugs, each identified by a DrugBank accession number.
Drugs are related to their target proteins in R14, which is populated by 7,977 binary
drug-target relationships from DrugBank. We use reported side-effects of drug
combinations form DrugBank as 21,821 binary indicators of interactions between
drugs in H4.

Gene interaction data. We obtain the relationships between genes from five sources of
interaction data (top five rows in Table 1). Genes are identified by their NCBI gene
IDs. We first map the approved gene symbols and Uniprot IDs to Entrez gene IDs
using the index files from HGNC database29, downloaded in November 2012. This is
done to convert all gene annotations, drug-target, and co-expression data into NCBI
IDs. To increase coverage of gene and protein interaction data, we include all genes

(or equivalently, proteins) for which at least two supporting pieces of information
were available in any of the data sources listed in Table 1. In total, these sources
include: 55,787 protein-protein interactions (PPIs) between 10,360 proteins (H 1ð Þ

1 ),
869 pairs of co-expressed genes (H 2ð Þ

1 ), 7,517 cell signalling interactions (H 3ð Þ
1 ), 511

human and interspecies genetic interactions (H 4ð Þ
1 ), and 1,505,831 pairs of genes

involved in metabolic pathways (H 5ð Þ
1 ).

Data fusion by matrix factorisation. We infer human disease-disease associations by
integrating a multitude of relevant molecular data sources. We use a data mining
approach based on matrix representation of these molecular data, which works by
simultaneous matrix tri-factorisation24 with sharing of matrix factors. The fusion
consists of three main steps (illustrated in Figure 1-A). First, we construct relation and
constraint matrices from all available data (Figure 3-A). Recall that a relation matrix
encodes relations between objects of two different types (e.g. gene to Gene Ontology
term annotation) and a constraint matrix describes relations between objects of the
same type (e.g. protein-protein interactions). Then, we simultaneously factorise the
relation matrices under given constraints, and finally we score statistically significant
associations in the matrix decomposition and identify disease classes (details below
and in Žitnik & Zupan (2013)24).

Approximate matrix factorisation estimates data matrix Rij [ Rni|nj as a product
of low rank matrix factors, Rij < GiSijGT

j , found by solving an optimisation problem.

Here, matrix factors are Gi [ Rni|ki , Sij [ Rki|kj and Gj [ Rnj|kj . Factorisation ranks
ki and kj are chosen to be smaller than both ni and nj (ki = ni and kj = nj), which
results in the compressed version of the original matrix Rij. Profiles (row vectors in
Rij) of many objects of type i are represented by relatively few vectors from Sij and low
dimensional vectors in Gi and Gj. Therefore, a good approximation can only be
estimated if these vectors span a space that reveals some latent structure present in the
original data. The key idea of our data fusion approach is matrix factor sharing when
we simultaneously decompose all relation matrices. Matrix factor Gi is shared across
decompositions of relation matrices that relate objects of type i to objects of some
other type, whereas Sij is used only in decomposing Rij. Factor Sij in our factorised
system is thus specific for a relation matrix Rij and factor Gi is specific for object type i.
They capture source- and object type-specific patterns, respectively.

The objective function minimised by the fusion algorithm enforces a good
approximation of the input matrices and is regularised by using available constraint
matrices presented in H(t):

min
G§0

R{GSGT
!! !!2

z
X5

t~1

tr GT H tð ÞG
" #

, ð1Þ

where :k k and tr(?) denote Frobenius norm and trace, respectively (they are com-
monly used in matrix approximation tasks). Input to our data fusion algorithm
consists of five constraint block matrices H(t), 1 # t # 5 due to five sources of
interaction data that represent relations between genes, and a relation block matrix R:

H tð Þ~

H tð Þ
1 0 0 0

0 H2 0 0

0 0 H3 0

0 0 0 H4

2

66664

3

77775
, R~

0 R12 R13 R14

R21 0 0 0

R31 0 0 0

R41 0 0 0

2

6664

3

7775 ð2Þ

The second, third and fourth block along the main diagonal of H(t) is zero for t . 1
because we have a single constraint matrix per disease, drug, and GO term object
types. To avoid data redundancy we encode only explicit relations between objects.
Such representation leads to zero off-diagonal blocks in R instead of relation matrices
R23, R24, R32, R34, R42 and R43 and to symmetry of relation matrices (Rji~RT

ij ,

Sji~ST
ij ). The notion of transitivity between relations is inherently considered by

fusion algorithm.

Table 1 | Data sources. All data sources used in this disease association study, their size, and edge density. Relation matrices Rij relate

objects of two different types and their numbers are reported separately (delimited by a forward slash)

Matrix Data description # Nodes # Edges Density Reference

H1
(1) Protein-protein interactions 10,360 55,787 0.00104 BioGRID v3.1.9451

H1
(2) Gene co-expression 539 869 0.006 Prieto et al.52

H1
(3) Cell signalling data 1,217 7,517 0.01016 KEGG53

H1
(4) Genetic interactions 542 511 0.00349 BioGRID v3.1.9451

H1
(5) Metabolic network 5,908 1,505,831 0.0863 KEGG53

H4 Drug interaction data 4,477 21,821 0.00218 DrugBank v3.054

H3 GO semantic structure 11,853 43,924 0.00063 Gene Ontology28

H2 DO semantic structure 1,536 1,098 0.00093 Disease Ontology1

R13 Gene annotations 17,428/11,853 100,685 0.00049 Gene Ontology28

R14 Drug-target relationships 1,978/4,477 7,977 0.00009 DrugBank v3.054

R12 Gene-disease relationships 5,267/1,536 22,084 0.00273 Mapped GeneRIF55
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Data fusion algorithm outputs the block matrix factors G and S, which we use to
identify disease classes:

G~

G1 0 0 0

0 G2 0 0

0 0 G3 0

0 0 0 G4

2

6664

3

7775, S~

0 S12 S13 S14

S21 0 0 0

S31 0 0 0

S41 0 0 0

2

6664

3

7775

Notice that each block of matrix R is simultaneously approximated as
Rij < GiSijGT

j , such that factor Gi (Gj) is shared among all matrices that relate objects

of i-th (j-th) type to any other object type. That is different from treating R as a single
homogeneous data matrix, which performs poorly24.

Parameters of the fusion algorithm are factorisation ranks, ki, which determine the
degree of dimension reduction for four object types in our fusion schema. These
factorisation ranks are selected from a predefined set of possible values to optimise the
quality of the model in its ability to reconstruct the input data from gene-disease
relation matrix R12. For example, gene-disease profiles of length <1, 500 in the
original space are reduced to profiles with <70 factors in data fusion space. We find
this approach to be robust and small variations in initial parameter tuning do not
impede the overall final quality of the fused system (data not shown). In our study,
factorisation ranks of 50 to 80 yield models of similar quality. In general, we find that

Table 2 | 14 predicted disease-disease associations currently not captured by the semantic structure of Disease Ontology. Literature support

for them is listed under the column denoted by ‘‘References’’. Reported p-values measure how likely it would be for a disease association to
emerge if gene-disease relation matrix was permuted, as described in Methods

Disease pair Literature evidence (quoted verbatim from the referenced source) References P-value

vitamin B deficiency (DOID:8449) ‘‘Vitamin B complex deficiency causes the psychiatric symptoms of atypical
endogenous depression. Dementia and depression have been association
with this deficiency possibly from under production of methionine.’’

32,33 ,0.001
endogenous depression
(DOID:1595)

gastric lymphoma (DOID:10540) ‘‘Mixed cryoglobulinemia-associated membranoproliferative
glomerulonephritis disclosed gastric MALT lymphoma. Glomerulonephritis
and lymphoma tend to co-exist in the same patients (relative risk 34.0; P ,
0.0001).’’

34–36 ,0.001
crescentic glomerulonephritis
(DOID:13139)

thyroid medullary carcinoma
(DOID:3973)

‘‘Paraneoplastic cholestasis and hypercoagulability associated with medullary
thyroid carcinoma. Cholestasis is likely a paraneoplastic effect of thyroid
medullary carcinoma.’’

37 0.001

cholestasis (DOID:13580)
crescentic glomerulonephritis

(DOID:13139)
‘‘Complex-mediated diffuse proliferative glomerulonephritis with crescentic

formation is associated with miliary tuberculosis. Antituberculous agents
successfully treat miliary tuberculosis and recovered renal function.’’

38,39 0.001

miliary tuberculosis (DOID:9861)
thyroid adenoma (DOID:2891) ‘‘Coexistence of bilateral paraganglioma of the A. carotis, thymoma and

thyroid adenoma. A common neuroectodermal origin is proposed as an
explanation for the coexistence of the carotid body tumor and multiple
endocrine tumors.’’

40 0.001
thymoma (DOID:3275)

early myoclonic encephalopathy
(DOID:308)

‘‘Angelman syndromes share a range of clinical characteristics, including
intellectual disability with or without regression and infantile encephalopathy.
It presents in infancy with nonspecific features, such as psychomotor delay
and seizures. This can lead to the descriptive labels of cerebral palsy or static
encephalopathy.’’

41,42 ,0.001

Angelman syndrome (DOID:1932)

autoimmune polyendocrine syndrome
(DOID:14040)

‘‘Autoimmune polyendocrine syndrome type 2 (known as Schmidt’s syndrome)
can be associated with interstitial myositis, an inflammatory myopathy which
can be pathologically distinguished from idiopathic polymyositis and
inclusion body myositis.’’

43 ,0.001

myositis (DOID:633)

primary hyperparathyroidism
(DOID:11202)

‘‘Primary hyperparathyroidism simulates sarcoidosis. Coexisting primary
hyperparathyroidism and sarcoidosis cause increased Angiotensin-converting
enzyme and decreased parathyroid hormone and phosphate levels.’’

44 ,0.001

sarcoidosis (DOID:11335)
cerebrotendinous xanthomatosis

(DOID:4810)
‘‘Mutations in the sterol 27-hydroxylase gene (CYP27A) cause hepatitis of

infancy as well as cerebrotendinous xanthomatosis. Accumulation of
cholesterol and cholestanol can lead to the xanthomata, neurodegeneration,
cataracts and atherosclerosis that are typical of cerebrotendinous xanthomatosis.’’

45 ,0.001

viral hepatitis (DOID:1884)

lepromatous leprosy (DOID:10887) ‘‘The precipitating causes of relapse in leprosy include mental depression which
downgrades immunity. The prevalence of dementia and depression in older
leprosy patients is high.’’

46 0.001
mental depression (DOID:1596)

male infertility (DOID:12336) ‘‘Complex chromosome rearrangements (CCR) are rare structural chromosome
aberrations that can be found in patients with phenotypic abnormalities or in
phenotypically normal patients presenting infertility. The malsegregation of
CCR can lead to partial 10p12.3 to 10p14 deletion, associated with the
DiGeorge like phenotype.’’

47,48 0.001
DiGeorge syndrome (DOID:11198)

Cushing’s syndrome (DOID:12252) ‘‘Hodgkin’s lymphoma is highly responsive to steroids and Cushing’s syndrome
results from over exposure to corticosteroids, so it could be considered a
treatment side effect. However, the co-existence in one patient of Cushing’s
disease (caused by a tumour in the pituitary) that suppressed the Hodgkin’s
lymphoma has been reported.’’

49 ,0.001
Hodgkin’s lymphoma (DOID:8543)

crescentic glomerulonephritis
(DOID:13139)

‘‘There can be two potential causes for the association: 1) that the drugs and
treatment regimen that cancer patients are on causes the glomerulonephritis,
or 2) that features of the cancer may cause the glomerulonephritis with ANCA
being associated in both cases.’’

36 ,0.001

prostate cancer (DOID:10283)

allergic bronchopulmonary
aspergillosis (DOID:13166)

‘‘Allergic Bronchopulmonary aspergillosis is caused by a fungal disease.
Fungal diseases are often treated with triazoles. Drug-induced myopathies are well
recognised with triazole class of drugs. The association between these two may
therefore be based on the treatment and risk it carries, rather than a common
mechanism.’’

50 ,0.001

myopathy (DOID:423)
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if the data contain meaningful information (as opposed to randomised input), the
optimised factorisation ranks are much smaller than input dimensions because these
data can be effectively compressed, and low-dimensional representation will provide
a good estimate of the target relation matrix. Conversely, this would not hold true if
we were to predict arbitrarily assigned labels. In that case factorisation ranks would
have to be substantially larger in order to produce somewhat comparable models. See
Žitnik & Zupan (2013)24 for a detailed explanation of the algorithm.

Disease class assignment. Each factorisation run produces a set of matrix factors that
reconstruct the three relation matrices in our model. For disease association dis-
covery, we are interested in approximating R12<G1S12GT

2 , specifically factor G2 that
contains meta profiles of DO terms and is used to identify classes of diseases. Class
membership of a disease is determined by maximum column-coefficient in the cor-
responding row of G2. This is a well-known approach in applications of non-negative
matrix factorisation30,31. A binary connectivity matrix C is then obtained from class
assignments with Cij set to 1 if disease i and disease j belong to the same class (see
algorithm in Figure 1-B). Repeating factorisation process 15 times with different
initial random conditions and factorisation ranks gives a collection of connectivity
matrices, C(i), i g 1, 2, …, 15. These are averaged to obtain the consensus matrix !C
that is then used to assess reliability and robustness of disease associations. The entries
in the consensus matrix range from 0 to 1 and indicate the probability that diseases i
and j cluster together. If the assignment of diseases into classes is stable, we would
expect that the connectivity matrix does not vary among runs and that the entries in
the consensus matrix tend to be close to 0 (no association) or to 1 (full consensus for
association). To recover informative and relevant disease associations, we are
interested in diseases with high values in the consensus matrix. The process is out-
lined in the algorithm given in Figure 1-B.

Disease associations scoring. Disease associations are scored by permuting the entries
in gene-disease relation matrix R12 and inferring the prediction model from the
permuted matrix. Matrix R12 encodes relations between genes and diseases, and via
genes to the rest of the fusion model, so permuting its entries is sufficient for a
complete rewiring of associations. To compute the p-values for the disease associa-
tions observed in our inferred model, we generate 70 consensus matrices (each one is
averaged over 15 permutations of a disease-gene connectivity matrix, giving 70 3 15
5 1,050 unique matrices) and express the p-value of a particular disease association as
the fraction of factorisation runs in which it was observed.
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3. Aymé, S., Rath, A. & Bellet, B. WHO international classification of diseases (ICD)
revision process: incorporating rare diseases into the classification scheme: state of
art. Orphanet J. Rare Dis. 5, P1 (2010).

4. Cornet, R. & De Keizer, N. Forty years of SNOMED: a literature review. BMC Med.
Inform. Decis. Mak. 8, S2 (2008).

5. Sioutos, N. et al. NCI Thesaurus: a semantic model integrating cancer-related
clinical and molecular information. J. Biomed. Inform. 40, 30–43 (2007).

6. Amberger, J., Bocchini, C. & Hamosh, A. A new face and new challenges for online
mendelian inheritance in man (OMIM). Hum. Mutat. 32, 564–567 (2011).

7. Loscalzo, J., Kohane, I. & Barabási, A.-L. Human disease classification in the
postgenomic era: a complex systems approach to human pathobiology. Mol. Syst.
Biol. 3, 124 (2007).

8. Gulbahce, N. et al. Viral perturbations of host networks reflect disease etiology.
PLoS Comput. Biol. 8, e1002531 (2012).

9. Lee, D.-S. et al. The implications of human metabolic network topology for disease
comorbidity. Proc. Natl. Acad. Sci. USA 105, 9880–5 (2008).

10. Goh, K.-i. et al. The human disease network. Proc. Natl. Acad. Sci. USA 104,
8685–8690 (2007).

11. Linghu, B., Snitkin, E. S., Hu, Z., Xia, Y. & Delisi, C. Genome-wide prioritization of
disease genes and identification of disease-disease associations from an integrated
human functional linkage network. Genome Biol. 10, R91 (2009).
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