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Summary

Objective: The assessment of the devel-
opmental potential of stem cells is a crucial
step towards their clinical application in re-
generative medicine. It has been demon-
strated that genome-wide expression profiles
can predict the cellular differentiation stage

" by means of dimensionality reduction meth-

ods. Here we show that these techniques can
be further strengthened to support decision
making with i) a novel strategy for gene selec-
tion; ii) methods for combining the evidence
from multiple data sets.

Methods: We propose to exploit dimen-
sionality reduction methods for the selection
of genes specifically activated in different
stages of differentiation. To obtain an inte-
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1. Introduction

Stem cells are self-renewing populations of
cells that can give rise to diverse specialized
cell types. In mammals, embryonic stem
cells (ESCs) can be isolated, proliferated
and differentiated in vitro into a potentially
unlimited variety of tissues. The same
pluripotent capability is attributed to in-

grated predictive model, the expression val-
ues of the selected genes from multiple data
sets are combined. We investigated distinct
approaches that either aggregate data sets or
use learning ensembles.

Results: We analyzed the performance of the
proposed methods on six publicly available
data sets. The selection procedure identified a
reduced subset of genes whose expression
values gave rise to an accurate stage predic-
tion. The assessment of predictive accuracy
demonstrated a high quality of predictions for
most of the data integration methods pre-
sented.

Conclusion: The experimental results high-
lighted the main potentials of proposed ap-
proaches. These include the ability to predict
the true staging by combining multiple train-
ing data sets when this could not be inferred
from a single data source, and to focus the
analysis on a reduced list of genes of similar
predictive performance.
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duced pluripotent stem cells (iPSCs), re-
programmed adult cells obtained by induc-
ing the expression of specific genes [1].
Some types of stem cells have been con-
sidered for use in gene therapy [2, 3], i.e.in-
serting normal genes into a person’s cells
for restoring the correct functioning of tis-
sues and organs affected by a particular
genetic disorder [4]. Thanks to their self-

renewal properties, stem cells would elim-
inate the need to provide repeated adminis-
trations of the therapy. The use of iPSCs is
considered appropriate for gene therapy, as
the cells can be generated from the individ-
ual's own tissues. These patient-specific
healthy cells can be transplanted, avoiding
problems with rejection. During this pro-
cess, cells may fail from successful repro-
gramming or differentiating and may re-
main trapped into partially differentiated
states due to several factors [5]. An accurate
monitoring of the pluripotency level is thus
required to make iPSCs transplantation a
safe and efficient practice in regenerative
medicine.

Keeping under control the molecular
signature that characterizes cellular differ-
entiation is particularly hard. At present,
the standard assay for pluripotency of stem
cells is the generation of different types of
tumours in immunodeficient mice [6]. Al-
ternative methods for assessment of cellu-
lar developmental potency have recently
gained interest. Given the increasing use of
genomic information for clinical practice
(7, 8], different experiments have been car-
ried out to derive a pluripotency signature
from microarray-based gene expression
data [9-11]. These studies have shown that
a suitable approach to transform the
whole-genome transcriptome profiles into
a predictive model of cell differentiation is
to apply dimensionality reduction tech-
niques to the RNA samples from various
stages of development. Recently, Muller et
al. [11] used a non-negative matrix factor-
ization algorithm to represent stem cell
data in a low-dimensional space. This rep-
resentation allowed testing two classifi-
cation methods that distinguish pluripo-
tent from non-pluripotent samples. Aiba et
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al. [10] studied the developmental potency
of differentiating mouse embryonic stem
cells and showed that the positions of the
samples along trajectories presented in
3-dimensional space reflect the devel-
opmental potency of the cells.

In arecent work [12], we adopted an ap-
proach similar to the one proposed by Aiba
etal. to predict the differentiation stage of a
cell from its genome-wide transcription
profile. We compared several methods that
transform a sample expression profile into
a real-valued projection. A one-dimen-
sional ruler, which we refer to as differenti-
ation scale was obtained by mapping the
projections of differentiation samples to a
one dimensional space. Samples from new
experimental settings (e.g.iPSCs or cellular
lines treated with chemical agents) were
projected on a scale developed in standard
conditions to uncover the actual stage of
development with respect to the normal
dynamics of differentiation. The predictive
accuracy of the proposed methods was
assessed computationally, either by cross-
validation within the same data set or by
training a predictive model on one experi-
ment and testing the predictions on an-
other one. We have examined both meth-
ods that construct the projections ex-

plicitly, such as Principal Component
Analysis (PCA), and methods that can rank
the presented samples, such as Minimum
Curvilinear Embedding [9]. We have also
observed that these methods in com-
bination with the computationally selected
1000 best-ranked genes ensure a high
quality of stage prediction, as opposed to
using only known pluripotency markers.
Among the different data transformation
and ranking approaches tested we pre-
ferred the PCA because of its simplicity and
the benefits of providing an explicit predic-
tion model. Although the aim of our work
was similar to the one studied by Muller et
al., the PCA-inferred model does not only
assign a classification label to characterize
the pluripotency of a new sample. In addi-
tion, the differentiation scale also provides
for visualization of the placement of the
sample on a scale where the distances re-
flect the differences among samples on a
phenotypic level.

The application of dimensionality re-
duction techniques to the analysis of stem
cell data started to be explored only re-
cently. One of its potential gains is to im-
prove the robustness of the predictions and
the consistency of the proposed methods in
order to develop a reliable decision-making
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Fig. 1

Differentiation stage prediction from a collection of data sets. A differentiation scale with a

position for each stage can be obtained from one data set by applying gene selection strategies and
principal component analysis. Integration methods combine multiple experiments in standard culturing
conditions to infer a model that predicts the developmental stage of a new uncharacterized sample.
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tool useful in the field of regenerative
medicine. With the increasing number of
available stem cell data sets in public re-
positories, one of the crucial goals in this
direction is to derive a robust differenti-
ation scale based on the evidence from dif-
ferent experiments with similar observed
processes and experimental settings. This
integrative and reliable tool should be
coupled with a selection of those genes that
are actually responsible for determining the
pluripotency signature of each stage. To
this end, it is straightforward to ask if the
differentiation scale could benefit from a
stage-specific gene selection as well as how
much a low number of key genes impacts
the performance of our integrative predic-
tive device.

In this report we show how the PCA-in-
ferred differentiation scale model can be
enhanced with i) a novel strategy for select-
ing the genes used by the model and ii)
methods for combining the evidence from
multiple training data sets. A summary of
the proposed methods is shown in »-Fig-
ure 1.

We here report on some major advances
with respect to our previous approach.
First, we propose a new strategy for gene se-
lection that specifically characterize a par-
ticular stage of development. The informa-
tion of which genes can be used as tran-
scriptional markers of each developmental
stage is valuable for researchers in the area
of regenerative medicine. Selected genes
may be used to investigate the biological
processes and pathways activated in spe-
cific phases along differentiation. Second,
the goal of this work is to provide a robust
differentiation scale by inferring the inte-
grated model from a collection of data sets.
To this aim, a number of methods for com-
bining gene expression data sets are evalu-
ated. Finally, we also demonstrate that re-
duced lists of genes can be successfully used
in the integrative model, providing high
quality stage prediction with reduced com-
putational costs.

The paper is structured as follows: in
Section 2 we introduce the PCA-based dif-
ferentiation scale model and we present the
approaches used for extraction of the most
informative genes and integration of a col-
lection of data sets. In section 3 we show the
performances of the algorithms on six data
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sets from NCBT’s Gene Expression Omni-
bus and application to iPSCs data. In Sec-
tion 4 we present a discussion of the main
features of the algorithms. Finally, Section 5
presents some concluding remarks and
future directions of the work.

2. Methods

To infer a stage prediction model and its
graphical representation, we apply PCA to
a data set containing genome-wide ex-
pression measurements for m genes in n
different samples along differentiation. The
data can be represented with an n X m
matrix D containing expression values d;
for each gene i measured in sample j. Using
PCA, areal number p(d;) can be assigned to
sample j by projecting its expression profile
d;=(d;y, ..., d;,) to the first principal com-

i\
ponent:

m
p(dy) = diw; (1)

i=1
with w; being the elements of the first ei-
genvector of the covariance matrix DD,
for a mean-centred data D. Each sample is
accompanied by the information about the
stage, that is, its ordering in the devel-
opment process. Such information can be
obtained from the development time at
which the measurement was performed
(e.g. “3 h” or “6 d”, as shown in »Fig. 1).
When multiple samples from the same
stage are included in the data we use the
median of their PCA projections. The final
result is a set of real numbers (projections
of stages) that can be used to construct a
one-dimensional ruler — the differentiation
scale.

A gene score GS;, that reflects the im-
portance of gene i in the stage of devel-
opment s can be derived using the PCA-
inferred weight w; and the average ex-
pression value of gene in the samples from
stage s:

GSis= wiajs, a; = |1—| > d; (2)
jes

Since weights w; are real numbers, gene

score GS;; can be either positive or negative.

In the following we show how this score is

used to select the most informative genes.

Other gene subset selection methodologies
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and methods for prediction based on
multiple data sets are also described.

2.1 Gene Selection

The first step of our analysis is the selection
of the genes whose expression values are
used to infer the predictive model. A fold-
change approach for time series data [13],
we referred to as FC, was tested in our pre-
vious work. We ranked the genes based on
the number of time points where the fold
change value with respect to the gene ex-
pression at the initial time point was at least
2-fold. A similar approach, named DIFF,
ranks the genes based on the difference be-
tween the average of expression values of
samples from the last and from the first
time point [14]. Finally, we used AREA, a
method that ranks the genes based on the
area bounded by the gene expression time
series and a constant profile with value
equal to the expression at the first time
point [15].

In our previous work, we observed high
quality of prediction when aset of 1000 best-
ranked genes was used for model training. In
this work, we compared these methods with
a strategy that selects a reduced number of
genes for prediction, that we refer to as Stage-
Specific Filtering (SSF). For each stage s, SSF
extracts genes with the highest scores GS;
(»Eq. 2). The lowest possible number of

genes is extracted for which the sum of their
scores is more than a chosen proportion (e.g.
99%) of the total sum. Genes selected in at
least one stage were used as features for the
predictive model.

2.2 Integration of Different Data
Sets

To address the problem of data integration
in the context of stage prediction we have
tested different approaches. The first one
we will refer to as Merging is based on the
aggregation of samples from separate ex-
periments. Numerous efforts have been
made to demonstrate the technical equival-
ence of microarray data across experi-
ments, when proper normalization meth-
ods are used to handle the variability that
characterizes different laboratories and ex-
perimental protocols [14, 16, 17]. Several
works directly concatenated the gene ex-
pression values from different samples, or
developed a meta-analysis to obtain an in-
tegrated score for each gene [18]. In this
study, we relied on a pipeline for combining
microarray data from NCBI GEO proposed
by Dudley et al. [14]. For each data set in
our collection, we applied quantile normal-
ization [17, 19] and we collapsed the probes
by computing the mean value of all probes
with the same Entrez Gene identifier. After-
wards, the arrays were merged. Each genein
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the data set collection was described with
an expression value for each stage, obtained
by computing the mean value across all
samples measured at the same time point.
The result of applying PCA on the ex-
pression values of the most informative
genes and thus selecting the first PCA is a
differentiation scale that combines all the K
data sets. New samples can be projected on
the integrated scale to predict the devel-
opmental stage. A variant of this method
called Merging ranks is obtained by apply-
ing rank normalization, i.e. replacing each
gene expression value by its rank in the
considered sample [14, 20]. The average of
the rank values across all the samples from
the same time point is then considered to
construct an aggregate data set.

Rank normalization was applied to each
data set in our collection and used to devel-
op a third method, called Ranks. In this ap-
proach we created an integrated matrix con-
taining only genes measured in all the data
sets. Instead of merging the arrays, we here
considered separately the rank values from
all the samples measured in each data set.

Another proposed method, here referred
to as Voting, borrows the main idea from en-
semble classification algorithms. These
methods have been shown to improve the
accuracy of classifiers [21,22]. Given a train-
ing set, the voting algorithms infer different
classifiers either by sampling from the data
or running different classification tech-
niques. The results are combined to create a
final classifier that predicts the stage with the
most votes. Our algorithm consists of an en-
semble of PCA models. A PCA model is
trained on each data set, obtaining K differ-
ent predictive models — differentiation
scales. Given a new sample s, the result of this
method is a predicted time interval resulting
from the consensus of all the inferred mod-
els. Each model k € {1, ..., K} infers a projec-
tion py(s) and a measure of the distance of s
from each candidate stage interval [t;, t] is
computed as in »Equation 3 (Fig. 3), where
S; is the set of samples from time point t,

Pi(x) isa 1-D projection of sample x inferred
with the k-th model, Me(set) the median of
the values in set. The time intervals are
ranked by each model based on the distances
Dyj;. For each interval, the sum of the ranks
from all models is then used as a score and
the best scoring interval, i.e. with the mini-
mum sum of ranks is returned as a predic-
tion.

As an alternative approach, we applied
Two-Dimensional Principal Component
Analysis (2DPCA) [23]. Within this meth-
od, the optimal projection of a set of
matrices {D;},i=1, 2, ..., K is given by the
eigenvector corresponding to the largest
eigenvalue of the covariance matrix

K ,
Sp= = 3 [D,=D'[D;~ D), B being the
K=
average matrix of all training data sets.
These matrices must be of the same dimen-
sion, so we reduced all the data sets to a
common set of probes and constructed a
set of matrices, one for each time point,
containing the average expression values of
the common genes in all the data sets. The
resulting covariance matrix was used to ob-
tain the projections for test samples.

2.3 Evaluation

We have compared the techniques for con-

struction of integrated differentiation scale

described in Section 2.2, and combined the

best integration model with the methods

for gene selection presented in Section 2.1.

The following procedure was applied:

1. Infer a differentiation scale model from
a collection of training data sets.

2. Obtain projections for samples from a
test data set.

3. Score the quality of the stage predictions
of test samples.

In the training phase, the model learns PCA
weights from the integrated data sets, or
separately from each training data set in the

o) - Me{pybo:x e SHI+ [ pils) - Melpily):y € ;)

kij =
2

, j=i+1

Fig. 3 Distance of a sample s from the [t;, t;] time interval
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case of Voting method. These weights are
used to combine the gene expression values
and construct a differentiation scale, or
separate scales for Voting.

Given a test sample f, the integrative
model predictsits differentiation stage in the
form of a projection on the scale, which
should correspond to its real stage of devel-
opment. For instance, if a sample from nor-
mal experimental conditions has been col-
lected after four hours along differentiation,
the projected data point should be placed
between “3h” and “9h” on the scale depicted
in p-Figure 1, i.e. p(t) >p(0h), p(1) >p(3h),
p(t) <p(9h) and p(t) <p(6d). Formally, we
have compared each test sample s, collected
at time point ¢, with each training sample s,
from time point ¢,,and we checked the rank-
ing of their projections. For Voting method,
the ranking predicted by the majority of the
training data sets was considered. In stan-
dard conditions, the predicted ranking
should preserve the original order of
samples. i.e. p(s,) >p(s,) &t, >t,. We check-
ed this condition for every pair of samples
from two different stages of development.
The proportion of pairs for which the orig-
inal ranking was preserved was taken as a
quantitative measure of the quality of pre-
dictions. This measure corresponds to the
C-score, a generalization of the area under
receiver operating characteristic curve [24].

3. Results

In this section we show the evaluation and
the application of two of the proposed
methods to a set of stem cell data from
NCBI’s Gene Expression Omnibus [25].
We focused on six data sets (GDS2666,
GDS2667, GDS2668, GDS2669, GDS2671,
GDS2672) from the same study that ana-
lyze differentiation into embryoid bodies
for three distinct but genetically similar
mouse ESC lines. We also show an appli-
cation of the integrative tool to predict the
pluripotency status of iPSCs.

3.1 Predictive Accuracy of the
Integrative Tool

In the following, the results in terms of pre-
dictive accuracy of integration methods
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and the contribution of SSF and other gene
selection methods are presented. P Fig-
ure 2 shows an example of stage-specific
gene selection on one data set. In general,
we noticed that the number of genes that
actually determine the position of each
point on the scale was considerably lower
than 1000. Moreover, the proportion of
positive terms that contribute to the pro-
jection increases along differentiation, thus
enabling the construction of a scale where,
in normal conditions, the true order of the
projections is preserved.

We have first evaluated the performance
of all the methods for integration presented
in Section 2.2, regardless of gene selection.
»Table 1 shows the C-scores obtained
when one data set is used as a test and the
other five data sets are combined with the
methods for integration previously de-
scribed. All the methods showed high
quality of prediction, with Merging obtain-
ing the best performance. To highlight the
statistical differences among the tested
methods, we ranked them for each data set
separately and we compared their average
ranks. Significant differences were ob-
served with Bonferroni-Dunn post hoc test
[26] (p <0.05) between Merging and both
Ranks and 2DPCA methods. The con-
straint of using genes measured in all the
training data sets (about 3000 genes)
required from these two methods did not
provide sufficient information for predic-
tion.

Inasecond step, we added different gene
selection methods to the best scoring inte-
gration strategy, Merging. The total
number of genes selected with SSF (o =
99.5%) on the merged data sets ranged
from 239 to a maximum of 292 when
GDS2668 and GDS2666 were used as test
data sets, respectively. The aim of this
analysis was to compare different methods
for the selection of a reduced set of genes, as
well as to investigate the contribution of in-
tegration and gene selection to the predic-
tive model. The performance of our pro-
posed method, SSE was compared with
other gene ranking methods when the same
number of genes selected by SSF was used.
The combined merging and selection
methods were compared with the ap-
proaches without gene selection (Merging)
and without integration (SSF). In the last
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Table 1 C-scores on six data sets from GEO. The average score and the average rank for each test
data set is reported.

Test data Merging Voting Merging Ranks 2DPCA

ranks

GDS2666 0.977 0.954 0.940 0.491 0.737
GDS2667 0.953 0.909 0.935 0.514 0.753
GDS2668 0.900 0.936 0.858 0.498 0.794
GDS2669 0.900 0.839 0.919 0.523 0.776
GDS2671 0.867 0.830 0.878 0.534 0.742
GDS2672 0.864 0.875 0.862 0.509 0.622
Avg. score 0.910 0.891 0.899 0.512 0.738
Avg. rank 1.667 2.167 2.167 5.000 4.000

case we considered the average of the scores
obtained for each test data set when the
training data were used separately for pre-
diction. All the scores obtained with the
methods that include gene selection were
around 0.8 with average scores ranging
from 0.895 for Merging-SSF to 0.844 for
SSF. The statistical analysis of the methods’
performance ranks is summarized in
»Figure 4. Integration methods per-
formed better than the approach without
integration (SSF), with a significant differ-
ence for the two best-ranked methods.
Merging-SSF was not significantly different
from the best method (Merging). We thus
prefer the variant with a reduced number of
genes and we used Merging-SSF to predict
the developmental stage of reprogrammed
cells.

3.2 Application

To test the utility of our integrative device,
we applied Merging-SSF to predict the de-

velopmental stage of pluripotent, partially
reprogrammed and differentiated mouse
cell lines [27]. These cells were studied by
Mikkelsen et al. [27] to characterize the ge-
nomic signature underlying various stages
of the reprogramming process. Repro-
grammed mouse embryonic fibroblasts
(r-MEFs) were obtained after 16 days of
culture with reprogramming factors, and
only the 1,2% of cells achieved complete re-
programming to a pluripotent state. The
obtained fully reprogrammed cells (iPSCs)
and cell lines trapped in a partially repro-
grammed state (MCV8) were isolated from
the culture. A small portion of the latter was
found positive for the stem cell marker
SSEA1 (MCV8+), and analyzed separately
from the less pluripotent SSEA1-negative
cells (MCV8-).

First, the six Gene Expression Omnibus
data sets were used to infer six separate
scales onto which we have projected the
data from four reprogrammed fibroblast
samples (P Fig. 5a). Next, Merging-SSF was
applied. The projections on the integrated

; cD :
1 2 3 4 5 6
Merging L SSF
Merging-SSF Merging-DIFF
Merging-FC Merging-AREA

Fig. 4  Statistical analysis of rank differences. Critical distance (CD) groups methods whose perform-
ances ranks are not statistically different according to Bonferroni-Dunn post hoc test (p <0.05)
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Fig. 5
Differentiation scale
and projection of re-
programmed fibro-
blast samples to the
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on a) one data set
(GDS2669) and b) in-
tegration of the six
data sets with
Merging-SSF

scale obtained from all the six data sets with
Merging-SSF method (> Fig. 5b) confirm-
ed the results of the genomic analysis. In
fact, iPSCs were projected next to early
stages, indicating a pluripotency level
highly similar to undifferentiated em-
bryonic stem cells. On the contrary,
MCV8+ and MCV8-— were predicted as
more differentiated samples, with MCV8+
associated to a more pluripotent status
than MCV8~. The projection of r-MEFs is
also coherent with the characterization of
these cells, where the majority of cells was
prevented from reaching a de-differenti-
ated state, resulting in a genomic profile
similar to partially reprogrammed cell
lines. As shown in b Figure 5, for some
data sets the inferred ordering of the pro-
jections did not correspond to the real
ordering of samples as described by Mik-
kelsen et al. and confirmed with Merging-
SSF model.

4. Discussion

The paper describes methods to deal with
several data sets in order to derive reliable
models for the prediction of differentiation
stage of cells. Besides standard methodol-
ogies for selecting genes that exhibit a
changed profile over time, we explored a
method that exploits PCA eigenvectors to

Methods Inf Med 4/2012

weigh genes for their contribution to the
differentiation potential in each stage. Se-
lected genes were used as features for inte-
grative models that combine data from sev-
eral experiments. We observed remarkable
differences among some of the tested inte-
gration methods in terms of predictive ac-
curacy. Merging, Voting and Merging ranks
performed very well. Despite that, some
differences that have impact on the appli-
cation of those methods should be under-
lined. Merging has the advantage of provid-
ing a common differentiation scale, which
illustrates the dynamics of the process
through a graphical representation. On the
other hand, the data sets considered for in-
tegration should refer to similar experi-
mental settings, since this approach di-
rectly aggregates all the samples by com-
puting average values for the included
genes. Voting is independent from the plat-
form and the experimental protocols, since
separate models are developed. It does not
result in a common scale but the different
scales are used to predict a consensus-based
time interval. Surprisingly, a small number
of genes selected with SSF strategy per-
formed very well and similarly to the ap-
proach that uses all the genes included in
the microarray profile. At this stage of
evaluation, we preferred the Merging
integration method accompanied with the
SSF gene selection strategy and we applied

it successfully to predict differentiation
stages of reprogrammed cells.

5. Conclusion

Stem cells and iPSCs offer exciting promise
for personalized therapies in regenerative
medicine, but several analyses have to be
carried out for monitoring the real differ-
entiation stage of cells before transplan-
tation. We have presented and evaluated
methods for the creation of a decision sup-
port tool that aims to become a reliable pre-
diction instrument of differentiation stage.
After the evaluation of different ap-
proaches, we identified a data integration
method, Merging, that enables accurate
and robust predictions. To complete the in-
tegrative tool, we added a gene selection
strategy, SSF, which provide insights into
the differentiation potential of each stage
and is used to select the features of the inte-
grative model, obtaining good perform-
ances. The results highlighted the capabil-
ity of the integrative tool, Merging-SSF, to
predict the correct order of samples in a
collection of data sets, and predicts well
also in cases when the real order is difficult
to be inferred from a single model-differ-
entiation scale. The utility of the proposed
methods needs to be further confirmed on
a larger collection of data sets, once more
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experiments on stem cell differentiation in
standard conditions will become available.
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