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Lemma 
Rule-based clustering for promoter analysis 

Summary 

Background  
The genetic cellular response to internal and external changes is determined by the sequence and 
structure of gene regulatory promoter regions.  
 
Objectives 
Using data on gene regulatory elements (i.e., either putative or known transcription factor binding 
sites) and data on gene expression profiles we can discover structural elements in promoter regions 
and infer the underlying programs of gene regulation. Such hypotheses obtained in silico can greatly 
assist us in experiment planning. The principal obstacle for such approaches is the combinatorial 
explosion in different combinations of promoter elements to be examined. 

Methods 
Stemming from several state-of-the-art machine learning approaches we here propose a heuristic, 
rule-based clustering method that uses gene expression similarity to guide the search for informative 
structures in promoters, thus exploring only the most promising parts of the vast and expressively rich 
rule-space. 
 
Results 
We present the utility of the method in the analysis of gene expression data on budding yeast S. ce-
revisiae where cells were induced to proliferate peroxisomes. 
 
Conclusions 
We demonstrate that the proposed approach is able to infer informative relations uncovering relatively 
complex structures in gene promoter regions that regulate gene expression. 
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1 Introduction 

Regulation of gene expression is a complex mechanism in the biology of eukaryotic cells. Cells carry 
their function and respond to the environment by an orchestration of transcription factors and other 
signaling molecules that influence gene expression. The resulting products regulate expression of 
other genes thus forming diverse sets of regulatory pathways. To better understand gene function and 
gene interactions we need to uncover and analyze the programs of gene regulation. Computational 
analysis (1) of gene regulatory regions that can use information from known gene sequences, putative 
binding sites and sets of gene expression studies, can greatly speed-up and automate the tedious dis-
covery process performed by classical genetics. 

The regulatory region of a gene is defined as a stretch of DNA, which is normally located upstream of 
the gene’s coding region. Transcription factors are special proteins that bind to specific sequences 
(binding sites) in the regulatory regions, thus inhibiting or exciting gene expression of target genes. 
Regulation by binding of transcription factors is just one of the many regulatory mechanisms. Ex-
pression is also determined by chromatin structure (2), epigenetic effects, post-transcriptional, trans-
lational, post-translational and other forms of regulation (3). Because there is a general lack of these 
kinds of data, most current computational studies focus on inference of relations between gene regu-
latory content and gene expression measured using DNA microarrays (4). 

Determination of the regulatory region and putative binding sites are the first crucial steps in such 
analyses. Regulatory and coding regions differ in nucleotide and codon frequency. This fact is suc-
cessfully exploited by many prediction algorithms (5), and promoter (regulatory) sequences are rea-
dily available in public data bases for most model organisms. The next crucial, well studied, and 
notoriously difficult step is to determine the transcription factors’ putative binding sites in promoter 
regions. These are 4 to 20 nucleotide long DNA sequences (3) which are highly conserved in the 
promoter regions of regulated genes. A matrix representation of the frequencies of the four nucleotides 
(A, T, C, G) at each position in the binding site is normally used in computational analysis. The 
TRANSFAC data base (6) is a good source of experimentally confirmed and computationally inferred 
binding sites. Candidate binding sites for genes with unknown regulations can be found using local 
sequence alignment programs such as MEME (7). A detailed description and evaluation of such tools 
is presented in the paper by Tompa et al. (8). 

Most contemporary methods that try to relate gene structure and expression start with gene expression 
clustering and then determine cluster-specific binding sites (4, 9). The success of such approaches 
strongly relies on the number and composition of gene clusters. Slight parameter changes in clustering 
procedures can lead to significantly different clustering (10, 11), and consequently to inference of 
different cluster-specific binding sites. Most often these methods search for non-overlapping clusters 
and may miss interesting relations, as it is known that genes can respond in many different ways and 
perform various functions (12). 

An alternative to clustering-first approaches are methods that start with information on binding sites 
and search for descriptions shared by similarly expressed genes. For example, in an approach by 
Chiang et al. (13) the group’s pair-wise gene expression intra-correlation is computed for each set of 
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genes comprising a specific binding site in the promoter region. Their method reports on binding sites 
where this correlation is statistically significant, but fails to investigate the combinations of two or 
more putative binding sites: it is known that regulation of gene expression can be highly combinatorial 
and requires the coordinated presence of many transcription factors. There are other approaches where 
combinations of binding sites are investigated, but they are often limited to the presence of two sites 
due to the combinatorial explosion of the search (4, 14). For example, the number of all possible 
combinations of three binding sites, from a base of a thousand binding sites available for modeling, 
quickly grows into hundreds of millions. Transcription is also affected by absolute or relative orien-
tation and distance between binding sites and other landmarks in the promoter region (i.e., the trans-
lation start ATG), further complicating the language that should be used to model promoter structure 
and subsequently increasing the search space. 

To overcome the limitations described above, we have devised a new algorithm that can infer poten-
tially complex promoter sequence patterns and relate them to gene expression. In the approach, which 
we call rule-based clustering (RBC), we essentially borrowed from several approaches developed 
within machine learning that use heuristic search to cope with potentially huge search space. The 
uniqueness of the presented algorithm is its ability to discover groups of genes that share any com-
bination of promoter elements that can be in placement and orientation specific to the start of the gene 
or to another promoter element. Below, we first define the language we use to describe the constitution 
of promoter region, then describe the RBC algorithm and finally illustrate its application on the 
analysis of peroxisome proliferation data on S. cerevisiae. 

2 Rule-based clustering method 

The inputs to the proposed rule-based clustering (RBC) method are gene expression profiles and data 
on their promoter regulatory elements. The algorithm does not include any preprocessing of expres-
sion data (e.g., normalization, scaling) and considers the data as provided. For each gene, the data on 
regulatory elements is given as a set of sequence motifs with their position relative to the start of the 
gene and orientation. The motifs are represented either by a position weight matrix (7) or a single line 
consensus; the former was used in all our experiments. The RBC algorithm aims to find clusters of 
similarly expressed genes with structurally similar promoter regions. The output of the algorithm are 
rules of the form “IF structure THEN expression profile”, where structure is an assertion over the 
regulatory elements in the gene promoter sequence and expression profile is a set of expression pro-
files of matching genes. 

2.1 Descriptive language for assertions on promoter structure 

RBC discovers rules that contain assertions-conditions on the structure of the promoter region that 
include the presence of binding sites, the distance of the binding sites from transcription and transla-
tion start site (ATG), the distance between binding sites, and the orientation of binding sites. We have 
devised a simple language to represent these assertions. For instance, the expression “S1” says that site 
S1 (in whichever orientation) must be present in the promoter, and the expression “S1−@−d1(ref:S2)” 
asserts that both sites S1 and S2 should be present in the promoter region such that S1, in the non-sense 
direction, appears d1 nucleotides upstream of S2. 
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The proposed description language is not unequivocal: the same promoter structure may often be 
described in several different ways. For example, any of the following rules may describe the same 
structure : “S1+@−d1(ref:ATG) and S2−@d2(ref:s1),” “S2−@−d3(ref:ATG) and S1+@−d2(ref:S2),” and 
“S1+@−d1(ref:ATG) and S2−@−d3(ref:ATG)”. All three descriptions require sites S1 and S2 to be 
oriented in the sense and non-sense directions, respectively. The first rule requires site S1 to be posi-
tioned at distance d1 from the reference ATG (translation start site) and the position S2 to be relative to 
S1. According to the second rule, the position of S1 is relative to the absolutely positioned S2 at dis-
tance d3 from ATG. The third rule defines the position of both sites relative to ATG. In such cases, the 
RBC algorithm will return only one of the semantically equivalent descriptions, depending on the 
order in which they were found in the heuristic search. 

2.2 RBC algorithm 

The proposed algorithm is outlined in Fig. 2. In its input it requires data on gene expression profiles 
Pall and data on promoter elements in the corresponding gene regulatory regions. The algorithm re-
turns a list of inferred rules of the form R = (C, P) with condition on the promoter structure C contained 
in genes with similar gene expression profiles P. 

RBC uses a beam-search approach (lines 3-12) followed by two post-processing steps (lines 13 and 14 
of the algorithm). Beam is a list of at most L currently inferred rules considered for further refinement 
that are ordered according to their associated scores (see below). Parameter L is a user-defined pa-
rameter (with a default value of 1000) that affects the scope of the search and thus the runtime. At the 
start of the search Beam is initialized with a rule “IF True THEN Pall” that covers all genes under 
consideration. 

In every iteration of the main loop (lines 3 to 12), the search focuses on the best-scored rule R = (C, P) 
from Beam and considers all possible single-term extensions of its condition C, which are allowed by 
the given descriptive language. Each such refinement results in a new candidate rule, which is added 
into the list of Candidates (line 6). The refinements include adding the terms with assertion on the 
presence of a site, presence of a site with its orientation, or the presence of a site (with or without the 
information on orientation) at a relative distance of a specific landmark (another site or start of gene). 
Refined rules are then represented in a simplified form. For instance, adding a single-site presence 
condition S1 to the initial rule “(True, Pall)” yields a rule “True and S1” which is simplified to its logical 
equivalent “S1.”  Adding a term with the same site but non-sense orientation to the latter yields the rule 
“S1 and S1−” which is simplified to “S1−.” Similarly, adding a term with the same site but with in-
formation on a distance of 100 to 80 nucleotides to the ATG may result in a rule such as 
“S1@−100..−80(ref:ATG).” Requirements of other binding sites may be added, either simply by 
requiring their presence (e.g., rule “S1 and S2”) or by adding them as a reference to the presently 

included sites in conditions (e.g., “S1@−100..−80(ref:S2)”). Candidate rules will include those with 
matching at least N genes, where N being a user-defined parameter with a default value of six. 

Candidate rules are then compared to their (non-refined) parent rule based on the intra-cluster 
pair-wise gene expression profiles distance of the covered genes. To identify co-expressed genes, the 
algorithm uses Pearson correlation as a default distance measure, which – when computing the dis-
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tance between two genes – ignores experiments where for any of these two genes the expression is 
missing. The user can replace it with any other type of distance function that suits the particular type of 
expression profiles or the biological question addressed.  For a set of candidate rules, only those with a 
significant reduction of this distance are retained in the list of Candidates (line 7). This decrease of 
variance in the intra-cluster pair-wise distances is tested using the F-test statistic: 

� � ���
�� � 1

���	
���	�
��	
���	� � 1�  

where SSR and SSCandidate are sums of squared differences from mean inside the cluster of genes cov-
ered by the parent rule R and by a refined Candidate rule, respectively, and values nR and nCandidate are 
the total number of genes in each of the two clusters. A p-value is calculated from the F score and used 
to determine the significance of change (the threshold, αF, defaults to 0.05). Figure 1 shows an ex-
ample of explored refinements during rule search that may lead to the identification of pro-
file-coherent gene clusters.  

The resulting refined rules stored in the Candidates list are added to Beam (line 9), which retains at 
most L best-scored rules (line 10). Because the goal is to discover the most homogeneous clusters, 
each rule is scored according to the potential coherence of its corresponding sub-cluster potentially 
obtained after the refinement of the rule. Potential coherence estimates how promising the cluster is in 
terms of finding a good subset of genes. While examining all subgroups of genes in the cluster would 
be an option, such an estimate is computationally expensive because of potentially large number of 
subgroups. Instead, we define the potential coherence of a cluster as the average of k·N·(k·N-1)/2 
minimal pair-wise profile distances. This in a way approximates a choice of a subset with k·N most 
similar genes. If the cluster being estimated contains less then k·N genes, its estimated potential equals 
to the average of all pair-wise gene distances. 

Rules for which the above procedure finds no suitable refinements and whose intra-cluster pair-wise 
distance is below a user-defined threshold D are added to Rules, the list that stores the terminal rules 
discovered by RBC algorithm (line 12). Note that a process of taking the best-scored rule from the 
Beam, refining it and adding newly found rules (if any) with improvements in intra-cluster profile 
distances is repeated until Beam is left empty.  

To further reduce the potentially large number of rules found by the beam search, RBC uses two 
post-processing steps (lines 13 and 14). RBC may infer rules that describe exactly the same cluster of 
genes. Each such rule set is considered individually, with the aim to retain only the most general rules 
from it. That is, for each pair of rules with conditions C1 and C2, only the first rule from the pair is 
retained in the rule set if its condition C1 subsumes condition C2, that is, it covers the same genes but is 
more general in terms of logic. For instance, condition “S1” subsumes condition “S1 and S2.” The 
remaining list of Rules is further filtered by keeping only the most coherent rules so that on average no 
more than a limited number of rules describe any gene (parameter M set by the user, default is five). 
The final set of rules is formed by selecting the rules with lowest intra-cluster distance first, and adding 
them to the final set only if their inclusion does not increase the rule-coverage for any gene beyond M.  
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Alternatively to considering all the genes in its input data, RBC can additionally deal with the in-
formation on a set of target genes for which the user wants to focus the analysis. Typically, target 
genes would comprise a subgroup of similarly annotated genes, or a subset of differentially expressed 
genes. If a target set is given, discovered rules are included in Beam and in the final set only if they 
cover at least N target genes. Because the algorithm starts with one rule (line 1), which describes all 
genes, the discovered rules can cover genes outside the target set. The method is thus able to identify 
genes that were initially left out of a target set but should have been included based on their regulatory 
content and gene expression. 

The proposed rule-based clustering method was inspired by the beam-search procedure successfully 
used in a well known, supervised machine learning algorithm CN2 (15), and by an unsupervised 
approach of clustering trees developed by Blockeel et al. (16), but is in its implementation and ap-
plication substantially different from both. CN2 infers rules that relate attribute-value based descrip-
tion of the objects to their discrete class, while clustering trees identify attribute-value based descrip-
tion of non-overlapping clusters of similar objects.  

RBC combines both approaches by using a beam search to infer symbolic descriptions of potentially 
overlapping clusters of similarly regulated genes. Compared to beam search in CN2, where the size of 
the beam is relatively small (ten to twenty best rules are most often considered for further refine-
ments), RBC uses a much wider beam but also generates potentially overlapping rules in a single loop. 
In contrast, in CN2, only the best-found rule is retained, objects covered by it removed from the data, 
and the procedure is restarted until no objects to be explored remain. Similar to CN2, the essence of 
our algorithm is rule refinement, for which, in the area of machine learning, the beam search proved to 
be an appropriate heuristic method. 

3 A case study and experimental validation 

We applied the proposed RBC method to data from a microarray transcription profiling study where 
budding yeast S. cerevisiae cells were induced to proliferate peroxisomes – organelles that com-
partmentalize several oxidative reactions – due to the cell’s regulated response to the exposure to oleic 
fatty acid (oleate) and to the absence of glucose, which causes peroxisome repression (17). The 
transcriptional profile of each gene consists of six microarray measurements on oleate induction time 
course, and two measurements in “oleate vs. glucose” and “glucose vs. glycerol” growth conditions. In 
total, gene pair-wise distance was calculated on gene expression profiles consisting of eight micro-
array measurements. We defined the pair-wise distance function to be 1.0−r, where r is the Pearson 
correlation between two gene profiles. 

For the target group we selected a set of 224 genes identified by the study to have similar expression 
profiles to those of genes involved in peroxisome biogenesis and peroxisome function. The goal of our 
analysis was to further divide the target group into smaller subgroups of genes with common promoter 
structure and possibly identify genes that were inadvertently left out of the target group but should 
have been included based on their expression and promoter structure similarity. 
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We analyzed data on 2,135 putative binding sites which were identified using a local sequence 
alignment software tool MEME (7). We searched for presence of these binding sites in 1Kb promoter 
regions taken upstream from the translation start site (ATG) for ~6,700 genes. The search identified 
~302,000 matches of putative binding sites that were then used to infer rules with RBC. The algorithm 
was run with the default values of parameters. Distances between binding sites were rounded to in-
crements of 40 bases; the maximum possible range of 2Kb (for the given promoter length, relative 

distances can be from −1Kb to +1Kb) was thus reduced to 50 different values (� 2000�/40�). This 
largely reduced the number of possible subintervals that needed to be considered during rule inference. 

The search returned 41 rules that described and divided 114 target genes (51% of target genes) into 37 
subgroups (see Fig. 3b). No rule could be found to describe the remaining 110 target genes. Most of 
the discovered gene groups are composed of five genes with high pair-wise intra-group correlation 
(above 0.927). Many genes are shared (overlap) between the 37 discovered groups, resulting in six 
major gene groups visible in Figure 3a and 3b. Seven genes outside the target set were also identified 
by the method (marked in black in Fig. 3a). For example, the smallest eight-gene group in the top-left 
corner in Fig. 3a includes two outsiders (INP53 and YIL168W - also named SDL1). Gene ontology 
annotation shows that INP53 is involved together with two target genes (ATP3 and VHS1) in the 
biological process phosphate metabolism. Gene SDL1 is annotated to function together with the 
group’s target gene LYS14 in the biological process amino acid metabolism and other similar parent 
GO terms (results not shown). Details on the promoter structure and gene expression are given in Fig. 
3c and 3d. These examples confirm the method’s ability to identify functionally related genes that 
were not initially included in the target set. 

The majority of the discovered rules in the case study include conditions that are composed of three 
terms, describing the binding site’s orientation and distance relative to ATG or other binding sites. 
There is no general binding site that would appear in many rules; only two rules include the same 
binding site (results not shown). 

Exhaustive search of even relatively simple rules can quickly grow into a prohibitively hard problem 
due to combinatorial explosion. Exhaustive search for all possible rules composed of three binding 
sites with defined orientation (three possible values: positive, negative, no preference) and distance 
(distance range is reduced into 50 different values) would, for this case study, require checking a huge 
number of rules: 

�2135 � 3
3 � � 50� � 5.47 � 10�� 

Our method checked 2 � 11 � 10  of the most promising rules, or less than 0.00004% of the entire 
three-term rule space. The search took 40 minutes on a Pentium 4, 3.4 GHz workstation. This de-
monstrates RBC’s ability to efficiently derive potentially complex rules within reasonable time frame. 

To evaluate the predictive ability of the approach we used a data set on 1364 S. cerevisiae genes that 
includes accurate binding sites data for 83 transcription factors (18). We modeled the regulatory re-
gion spanning from −800bp to 0bp relative to ATG. Pair-wise gene distance was calculated as the 
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average pair-wise distance across nineteen gene expression microarray studies available at SGD’s 
Expression Connection data base (http://www.yeastgenome.org/). All genes were considered to be 
target genes. 

Five-fold cross-validation was used that randomly splits genes into five sets. Clustering and testing of 
the inferred rules was repeated five times, each time with a different set of genes for validation of a 
model constructed using the remaining four sets. Each discovered rule was tested on genes in the test 
set. If a rule matched the promoter region of a test gene, then we calculated the prediction error by 
calculating the distance between the true gene expression of the test gene and its predicted expression. 
When more than one rule could be applied to predict the expression of a test gene, the average pre-
diction error was returned for that gene. Overall, the method successfully predicted the expression of 
286 genes (21% of all genes considered), with an average cross-validation prediction error of 0.75. If 
we were to use “random” rules, which would randomly cluster genes into groups of the same size as 
those by inferred rules, we could expect the prediction error to be 0.96. We believe that the achieved 
prediction error is a good indication of the predictive quality of inferred rules. 

4 Conclusion 

The proposed rule-based clustering method can efficiently find rules of gene regulation by searching 
for groups of similarly expressed genes and with similar structure of the regulatory region. Starting 
from a target set of genes of interest, the method was able to cluster them into subgroups. Concur-
rently, RBC may expand the target set by identifying other similarly regulated genes that were initially 
overlooked by the user. Rule-search is guided and is made efficient by the proposed search heuristics. 
An important feature of RBC is its ability to discover overlapping groups of genes, potentially indi-
cating common regulation or function. 

The algorithm uses a number of parameters that essentially determine the size of the search space 
being examined. The default values provided with the algorithm were set according to particular 
characteristics of the domain (e.g., about ten thousand genes, small subset of genes sharing some motif 
pattern, most known patterns include from one to five motifs (19)). The choice of parameters also 
affects the run time, and the defaults were chosen to make implementation practical and to infer the 
rules within one hour of computational time on a standard personal computer. 

We have experimentally confirmed the ability of RBC algorithm with default settings to infer rules 
that describe a complex regulatory structure and which can be used to reliably predict gene expression 
from regulatory content. In contrast with other contemporary methods that mainly use information on 
the presence of binding sites, a principal novelty of our approach is the use of a rich descriptive lan-
guage to model the promoter structure. The language can be easily extended to accommodate other 
descriptive features, such as chromatin structure, when such kinds of data become available on a 
genome-wide scale. 

To summarize and display the findings of the analysis at different levels of abstraction we have ap-
plied different visualizations, which proved useful for understanding and biological interpretation. We 
believe that the main application of RBC is an exploratory search for additional evidence that genes, in 
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theoretically or experimentally defined groups, actually share a common regulatory mechanism. The 
biologist can then gain insight by looking at the presented evidence and can better decide which in-
ferred patterns are worth testing in the laboratory.  
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Figures 

 

 

Figure 1. Example of a rule search trace. Rule refinements that result in a significant increase in gene 
expression coherence (check mark) are explored further. Search along unpromising branches is 
stopped (cross). 
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Input: a set of gene expression profiles Pall (for every gene, a vector of gene expressions), and a set of promoter elements 
for observed genes (for every gene, a set of tuples (motif_id, position relative to ATG, orientation) that define the list of 
motifs in the regulatory region of the gene). 
 
Output: list of inferred rules that relate promoter structure and gene expression; each rule R = (C, P), which can be read as 
“IF C THEN P,” is a pair of condition on promoter structure C and rule’s expression profile P (a collection of expression 
profiles of genes that match C). 

Parameters: 
L size of the search beam (default: 1,000 rules), 
N minimum number of genes that a rule’s condition has to match (default: 6), 
D maximum average intra-cluster pair-wise distance (0.5, for 1-Pearson correlation used in our applications), 
k used in computation of cluster’s potential coherence, estimated as the smallest intra-cluster average pair-wise dis-

tance for a subset of  k ⋅ N genes (default: 2), 
αF  significance level for acceptable change in cluster’s coherence after rule refinement (default: 0.05), 
M average number of rules retained during post-processing, which are used to describe a gene (default: 5) 
 
1 Beam ← [(True, Pall)] 
2 Rules ← []; is a list of discovered rules 
3 while Beam not empty 
4  R=(C, P) ← highest scored rule from Beam 
5  remove R from Beam 
6  Candidates ← rules covering at least N genes with all possible extensions of C with a single new term in  
    condition and an associated matching subset of gene expression profiles P 
7  Candidates ← subset of rules from Candidates with intra-cluster distances significantly (αF) lower than R  
8  if Candidates not empty 
9   add rules from Candidates to Beam 
10   Beam ← L best-scored candidates from Beam (uses k) 
11  else 
12   if intra-cluster distance of R < D then add R to Rules 
13 from subsets of completely overlapping rules in Rules keep only most general ones 
14 from Rules remove rules with low scores and high overlap with higher-scoring rules (uses M) 
15 return Rules 
 
Figure 2. Outline of the RBC algorithm. 
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Figure 3. a) Gene network, where we connect genes from same rule, for the peroxisome data set 
(target genes in gray, genes outside target in black). It includes 114 target genes and 7 outside genes, 
which are clustered in six major groups. b) Group graph of the discovered 37 clusters (two groups are 
connected if sharing a subset of genes). c and d) Inferred promoter structure and gene expression of the 
two sub-clusters forming the eight-gene cluster, marked “1” in figure 3a (also shown as clusters 
“group 37” and “group 34” in 3b). 

 


