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Abstract

In management of severe trauma patients, trauma surgeons need to decide which patients are eligible for damage
control. Such decision may be supported by utilizing models that predict the patient’s outcome. The study described
in this paper investigates the possibility to construct patient outcome prediction models from retrospective patient’s
data at the end of initial damage control surgery by using feature mining and machine learning techniques. As the
data used comprises rather excessive number of features, special attention was paid to the problem of selecting only
the most relevant features. We show that a small subset of features may carry enough information to construct
reasonably accurate prognostic models. Furthermore, the techniques used in our study identified two factors, namely
the pH value when admitted to ICU and the worst partial active thromboplastin time, to be of highest importance
for prediction. This finding is pathophysiologically reasonable and represents two of three major problems with severe
trauma patients, metabolic acidosis, hypothermia, and coagulopathy. © 2001 Elsevier Science Ireland Ltd. All rights
reserved.
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1. Introduction

Recent advances in machine learning, data
mining and intelligent data analysis has re-

sulted in increased utility of their methods to
derive medical prognostic models from retro-
spective data [8,10,14]. On one side, this can
contribute to increased availability and vol-
ume of medical data gathered through sys-
tematic use of laboratory, clinical and
hospital information systems. On the other
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side, the aforementioned modeling tech-
niques have matured and may, beside the
ability to construct highly predictive models,
support feature mining through informed se-
lection and transformation of most relevant
features from the data [5,7], construction of
interpretable prognostic models [8], handling
of noise and missing values, and discovery
and incorporation of non-linear patterns
and feature combinations.

The paper investigates the utility of fea-
ture mining and machine learning tech-
niques to construct an outcome prediction
model for severe trauma patients after the
first surgery. Trauma surgeons face complex
management and decision making problems
when treating patients with severe traumatic
injury. In the initial period of treatment, the
patient’s continued hemodynamic instability
may increase the risk of difficulty of defini-
tive repair of all injuries. Bold attempts to
completely correct acute surgical problems,
especially trauma, were explored in 1970s
and 1980s. The surgical goals of extensive
reconstruction and resection at the initial
operation were achieved, but the patients
went on to die of respiratory failure, multi-
ple organ distress, and coagulopathy.

The damage control approach emerged
from a need to meet the challenge of the
changing scope and severity of injury. The
basic concept of damage control for trauma
patients is to avoid extensive procedures on
unstable patients, stabilizing fatal problems
at initial operation, and applying staged
surgery after successful initial resuscitation.
Damage control, however, requires a mas-
sive investment of personnel, efforts, and re-
sources in a small group of critically injured
patients who carry a mortality rate in excess
of 50%, even under the best circumstances.
From the viewpoint of resource allocation,
a reliable prognostic model at the end of
initial damage control surgery is desired to

optimize the use of limited medical re-
sources.

To develop a corresponding outcome
prognostic model, a particular problem ad-
dressed in our study was that the database
of patient records from Ben-Taub General
Hospital in Houston used included rather
excessive number of features, so a special
attention was paid to the problem of select-
ing only the most relevant ones. Although
the number of patient records in the data
set was relatively small, we show that a
small subset of features may carry enough
information to construct reasonably accu-
rate prediction models.

The paper is organized as follows. Section
2 introduces the dataset that was used to
investigate the plausibility of modeling the
outcome for severe trauma patients. The
feature mining, machine learning and model
evaluation methods are introduced in Sec-
tion 3. The results of data analysis, con-
struction of predictive models and their
evaluation are reported in Section 4. Section
5 summarizes the results and concludes the
paper.

2. Data

We examined 68 patients retrospectively
who required damage control surgery at
Trauma and Critical Care Center, Ben-Taub
General Hospital, Houston, TX, in the pe-
riod from 1994 to 1997. A set of 174 fea-
tures including patient characteristics,
features of prehospital care, physical and
laboratory findings in emergency room, op-
erating room and intensive care unit (ICU)
was used in the analysis. The data set in-
cluded many missing values; preliminary
data set inspection showed that for 78 fea-
tures data was missing for at least 50% of
patients— these features were not included
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in further analysis. The resulting data set
(68 patients, 96 features) had 20.7% of miss-
ing values. Out of sixty-eight patients, 45
(66.2%) have died during their stay at hos-
pital.

3. Methods

A number of preprocessing, modeling and
performance estimation methods were used
in this work. We first describe feature min-
ing techniques that were used to narrow a
list of features used. From the resulting
data set, prediction models were derived by
classification trees and naive Bayes tech-
niques. The performance of the models was
assessed through using various criteria and
statistical tests.

3.1. Feature mining

Feature mining is a data mining preprocess-
ing stage where, for classification tasks, a
subset of most relevant features is identified
and potentially reformulated [7]. The identifi-
cation of most relevant features is most often
related to their ranking, subset selection and to
their categorization.

In the first step of the preprocessing, we
categorized (discretized) the continuous fea-
tures. This was required for naive Bayes mod-
eling technique, which does not directly handle
continuous features. Besides, the mere infor-
mation on how the features were categorized
can be interesting for the domain expert to
verify the relevance of the data base (if catego-
rization is as expected) or to point out for new
and interesting categories and cut-off points.
We have used two approaches for categoriza-
tion, quartiles and entropy-MDL based dis-
cretization. The quartile discretization splits
the range of feature values into four intervals,

so that the number of patients within each
interval is approximately equal. The more
sophisticated entropy discretization [2] uses a
top-down approach, similar to clustering
methods. It starts with an interval covering all
the feature values and finds a cut-off point,
which maximizes the informativity. Informa-
tivity [12] is measured with respect to the
outcome; the better the categorized feature can
be used to predict the outcome, the higher the
informativity. If the gained information is
greater than the increase of the minimal de-
scription length for the feature values, the
interval is cut into two subintervals and the
procedure is repeated on both of them. How-
ever, it often happens that the process stops at
the first step already. In this case, that is, when
no useful categorization was found, such fea-
ture is regarded as irrelevant. In this way the
entropy-based discretization can also be used
as a feature selection tool.

As the quartile discretization considers only
the values of the feature that is being dis-
cretized independently of other features or
outcomes, it tends to be more noise-proof on
one side but potentially less interesting for the
domain expert on the other side. Besides, the
number of intervals for the quartile discretiza-
tion is fixed, so it cannot be used for the feature
subset selection.

After categorization, features were ranked
using RELIEFF [3,4], which measures useful-
ness of a feature by observing the relation
between its value and patient’s outcome. Intu-
itively, if there is a group of patients with
similar feature values, the observed feature is
‘valuable’ as a predictor if it has different
values on pairs of patients with different out-
comes (thus distinguishing between them), but
the same value on pairs with the same out-
come. Features with negative RELIEFF esti-
mate may be considered to be irrelevant.
Features with the highest score are presumed
to be the most useful for predicting the out-
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come. In our study, features were ordered
according to their RELIEFF scores and pre-
sented to the expert who performed the final
selection.

3.2. Data modeling

After we have reformulated the trauma
patients’ descriptions by categorizing and se-
lecting the features, we used two well-known
machine learning techniques to induce the
predictive models. The first one was our own
implementation of classification trees derived
from a commonly-known ID3 recursive parti-
tioning algorithm [12]. The basic idea of ID3
is to partition the patients into ever smaller
groups until creating the groups with all pa-
tients corresponding to the same class (e.g.
survives, does not survive). To avoid overfit-
ting, we have used a simple pruning criterion
that stops the induction when the sample size
for a node falls under the prescribed number
of examples or when a sufficient proportion of
a subgroup has the same output.

The second machine learning method used
was a nai�e Bayes classifier. Assuming the
independence of predictive variables, the prob-
ability that a patient described with values of
predictor variables V= (�1, …, �n) survives can
be estimated by naive Bayes formula [6]

P(R �V)=P(R) �
n

i=1

P(R ��i)
P(R)

where P(R) is the apriori probability of sur-
vival and P(R ��i) is the conditional probability
of survival if ith predictor variable has the
value �i ; both are estimated from the training
set of patients. The naive Bayes formula used
in the paper is correct. Note that this formula
can be derived from the more common form

P(R �V)=
P(R)
P(V)

�
n

i=1
P(�i �R)

by reusing the Bayes rule

P(�i �R)=
P(R ��i)P(�i)

P(R)
Naive Bayes classifier and classification trees

were chosen because they represented two
essentially different approaches for induction
of predictive models. Naive Bayes models
include all of predictive variables used in the
data, while classification trees in general only
use a subset of most informative features.
Naive Bayes models are in essence linear, while
classification trees may include more complex
relationships. For modeling from medical
data, however, it was observed that naive
Bayes most often performs best, outscoring
classification trees, rules, and even artificial
neural networks [1,6].

A baseline for comparison with above two
methods was a majority classifier that uses a
training set to determine the most frequent
class and then classifies all cases from the test
set to that class.

3.3. Model e�aluation methods, metrics, and
comparison statistics

After categorizing and selecting the fea-
tures and inducing outcome prediction mod-
els, different statistical measures can be used
to estimate the quality of derived models.
From those, which we used in this study, the
first three (classification accuracy, sensitivity
and specificity) consider the class prediction
while the other two (average probability as-
signed to correct class, area under ROC
curve) use the model to predict the probabili-
ties of classes.
� Classification accuracy (CA) measures the

proportion of correctly classified test ex-
amples, therefore, estimating the probabil-
ity of the correct classification.

� Sensitivity and specificity (Sens/Spec) mea-
sure the model’s ability to ‘recognize’ the



J. Demšar et al. / International Journal of Medical Informatics 63 (2001) 41–50 45

patients of a certain group. If we decide to
observe the surviving patients, sensiti�ity is
a probability that a patient who has sur-
vived is also classified as surviving, andspe-
cificity is a probability that a not-surviving
patient is classified as not-surviving.

� Average probability assigned to the correct
class (AP) is related to classification accu-
racy, but it gives additional information on
the reliability of the classifier’s decisions. If
this measure is low, the classifier can still
have a good classification accuracy but its
decisions are, on the average, marginal.

� Area under ROC curve (aROC) is based on
a non-parametric statistical sign test and
estimates a probability that for a pair of
patients of which one has survived and the
other has not, the surviving patient is given
a greater probability of survival. This prob-
ability was estimated from the test data
using relative frequencies.
The above metrics and statistics were as-

sessed through stratified ten-fold cross-�alida-
tion [11]. This divides the patient’s data set to
ten sets of approximately equal size and equal
distribution of outcomes. In each experiment,
a single set is used for testing the classifier that
has been developed from the remaining nine
sets. The statistics for each method are then
assessed as an average of ten experiments. The
same training and testing data sets were used
for all classification methods.

The described statistics estimate the quality
of a single classifier. Although they can be used
to compare classifiers, a better and more
statistically correct test is available for this
purpose. McNemar’s test compares two
classifiers by counting the examples, which
were classified correctly by the first but not by
the second classifier (n10) and vice versa (n01).
As the same training and test sets are used for
both induction methods, counts can be
summed for all ten cross-validation experi-

ments. Under the null hypothesis, the
classifiers are equal and so are the counts,
n10=n01.

The statistics D, computed as

D=
(�n01−n10�−1)

n01+n10

is distributed approximately by the �2 distribu-
tion with one degree of freedom.

Another important evaluation of the in-
duced model is done by the domain expert who
ultimately decides whether the models make
sense and can be of practical prognostic value.

4. Feature mining and model construction

From the set of 96 features, the entropy
based discretization found 56 features as irrel-
evant. RELIEFF assigned negative score to
additional four features, thus resulting in a
data set with only 36 features. From these, the
expert (a board certified emergency physician)
selected ten predictive features (features 1–10
in Table 1) considering also their potential
clinical significance. The expert additionally
verified and confirmed that among features not
included in the set of 36 there are none that
should be additionally selected for modeling.
This confirms the usefulness of feature subset
selection in our setting.

The expert also inspected the categorization
found by the entropy-based algorithm by using
previous reports, pathophysiological interpre-
tation and the additional statistical analysis.
For instance, for APPT–WORST he proposed
80 as a simpler boundary than 78.7. For
BE–ICU he proposed a higher range of 22.5.
These are the only two features that should
always be treated as categorical, while other
continuous features can also be modeled as
continuous, if the modeling technique allows
it. The remaining features should be, in his
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opinion, categorized to three rather than two
intervals. We can expect that the method used
would indeed devise a finer categorization if
more patients were available. Apart from this,
the proposed categorization seemed clinically
reasonable.

The selected ten features, together with the
two-valued outcome (Death, Well) constituted
our first data set. Additionally, the expert
proposed another feature subset in which
MBP–WORST and PH–WORST were re-
placed by SBP–WORST and PH–ICU (fea-
tures 11 and 12 in Table 1), respectively.

Modeling algorithms were successful on
both data sets. The classification accuracy was
especially high for the second one, reach-
ing accuracy of 93% of correct classifications.
The conditional probabilities in the naive
Bayes classifier and the graphical presentation
of the classification tree revealed the models’
main strategy; for classification trees, all pa-
tients which were given Catecholam were
classified to ‘Death’ and similarly, the condi-
tional probability of survival after being given
Catecholam was 0.00. The inspection of the

data indeed proved that from 68 patients, all
the 16 patients who were given Catecholam
died. The expert confirmed that the relation
found is sensible but useless. As this drug is
usually the last resort used for the most severe
patients, it is highly correlated to the patient’s
outcome but the surgeon cannot use it for
making predictions. The expert proposed to
remove this feature from the data set for the
further experiments.

We, therefore, formed a third data set,
with the same features as the second one but
with CATECHOLAM removed. The results
on this data set are presented in Table 2.
Classification trees and naive Bayes classifier
are better than the baseline majority
classifier, though the statistical significance of
the differences is (at best) marginal, probably
also due to the low number of patients. Using
McNemar’s test, the classification tree model
with entropy-based discretization was found
to be significantly better than majority
classifier (P=0.04), while the tree models
with quartiles discretization and naive Bayes
models with quartiles and with entropy-based

Table 1
Selected features and their description (in alphabetical order)

Featurec ReferenceDescriptionCategories

1 APPT–WORST The worst partial active thromboplastin time�78.7, �78.7 25–33 s
�−12.6,BE–ICU −2 to 22 �Bicarbonate excess at ICU
−12.6

Physician’s impression regarding coagulopathy during3 Yes, No NoBLEEDING–T
operation

NoYes, NoCATECHOLAM Cathecholamine administration4
5 �2.5, �2.5 Estimated blood lossEBL

�60 mmHgMBP–WORST �36.3, �36.3 The worst mean blood pressure6
The worst arterial carbon dioxide tension 35–45 TorrPACO2–OR7 �44.0, �44.0
The worst pH 7.35–7.45PH–WORST8 �7.0, �7.0

10.7–13.0 sProthrombin time at ICU�22.3, �22.39 PT–ICU
The type of closingTYPE–OF–CL10 Skin, Bag

7.35–7.45�7.20, The worst pH value at ICU12 PH–ICU
7.20–7.33,
�7.33
�57.0, �57.0SBP–WORST �90 mmHg11 The worst systolic blood pressure
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Table 2
Classification accuracy (CA), average probability assigned to the correct class (AP), sensitivity (Sens) and specificity
(Spec) and area under ROC curve (aROC)

CAPrognostic model AP Sens Spec aROC

0.552 1.000Majority 0.0000.662 0.500
Classification tree (quartiles) 0.824 0.663 0.800 0.870 0.834

0.686 0.8220.824 0.696Classification tree (entropy) 0.849
0.777 0.800Naive Bayes (quartiles) 0.8260.809 0.891
0.777 0.8000.794 0.826Naive Bayes (entropy) 0.882

discretization have significance levels of 0.06,
0.09 and 0.14, respectively.

Fig. 1 shows a classification tree build from
the data set with all 68 patients. Notice that
because of missing values in the data several
patients do not appear in the leaves of the tree.
In the data set of 68 patients PH–ICU is
defined for 51 patients, and of 20 patients with
PH–ICU between 7.20 and 7.33, 18 patients
have a defined value for APPT–WORST.

The classification tree was obtained using a
simple prepruning (requiring at least two ex-
amples in each leaf, and allowing a maximal
proportion of 90% of majority class in each
internal node). From the expert’s perspective,
this classification tree is a reasonable model for
outcome prediction. It is based on the impor-
tant representatives from two of the most
important groups of factors, which affect the
outcome, coagulopathy and acidosis. It is also
interesting that the particular importance of
this two features to the patient’s outcome was
theoretically stressed in the work of Rotondo
et al. [13]. Actually, the authors claim that the
two mentioned features, together with body
temperature, are the three that best determine
the patient’s outcome. Based on our data set,
the temperature was left out as not being
highly relevant and was excluded already in the
categorization phase. Essentially, the reason
why other features were estimated as more
relevant can be observed from Fig. 2. It
compares differences between outcome proba-

bilities for different values of features. The
worst body temperature (T–W) and body
temperature when the patient was admitted to
ICU (T–ICU) are inspected. We used a cut-
point at 34 °C for both values. The patients
whose body temperature was below 34 °C
showed higher mortality compared with those
with temperature above 34 °C (51 vs. 23%),
however, the difference was not significant,
probably due to a small sample size. The
differences of outcome probabilities for T–
ICU (51 vs. 23%) and for T–W (57 vs. 33%)
are smaller than for partial active thrombo-
plastin time (63 vs. 13%), indicating that the
latter may have much higher predictive value.
Similar was observed when body temperature
was compared with other selected features
from Table 1 (Fig. 2 shows only the features
used in the classification tree from Fig. 1).

The topmost decision in the classification
tree from Fig. 1 is based on the blood’s pH

Fig. 1. A classification tree model, derived with entropy
discretization with simple prepruning.
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Fig. 2. Histograms that show distribution of patients and probabilities of their outcomes for different values of the
body temperature when admitted to ICU, minimal body temperature while at ICU, the worst pH value at ICU, and
the worst partial active thromboplastin time. The width of the column corresponds to the number of patients and its
height to probability of survival.

value (PH–ICU), which reflects many impor-
tant aspects of the injury (respiratory and
cardiovascular distress, blood loss and cellu-
lar damage). As the lower value indicates
severe damages to patient’s vital systems, pa-
tients with pH level below 7.20 are not ex-
pected to survive. A normal value of pH
(�7.33) predicts probable survival of the
patient. The outcome for the patients with
the pH values between 7.20 and 7.33 is pre-
dicted from the worst partial active thrombo-
plastin time value (APPT–WORST), which
assigns a greater probability of survival to the
patients with normal blood coagulation. No-
tice that the resulting tree incorporates only
two of the nine predictive features from the
data set used. We can, however, speculate
that retrospective data that would include a
higher number of patients would enable us to
induce a larger, yet reasonable classification
trees.

Naive Bayes classifier can be graphically

represented in a device called a nomogram
[9]. The nomogram (Fig. 3) shows the impact
of individual features on death (upper labels
on feature lines) and survival (lower labels).
The values right of zero favor death/survival
and the values on the left speak against it.
For example, PH–ICU levels above 7.33 and
between 7.20 and 7.33 are to the left of zero
and speak against the patient’s death, while
values below 7.20 are indicators for death.

Nomogram can be used to compute the
probabilities of outcomes. First, the impact
factors for feature values must be summed,
once for death and once for survival, using
the scale above (below) the table. The sums
are then converted into probability estima-
tion using the lookup graph at the bottom
of the nomogram and, finally, normalized to
sum of 1. Features, which were not mea-
sured, can be simply ignored during com-
putation. For example, a patient (APPT–
WORST=85, BLEEDING–T=NO, PH–
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ICU=7.25) has the sum 0.3−0.2−0.2=
−0.l for death and −1.0+0.3+0.3= −0.4
for survival. Approximation by the lookup
table (scale at the bottom of a nomogram)
gives 60% for death and about 22% for sur-
vival, which, when normalized to 100%, gives
the final probabilities of 73% for death and
27% for survival.

The nomogram also points out some spe-
cifics about the domain we are modeling. The
features whose values are most dispersed
through the score line are the ones that are
most predictive, i.e. influence the outcome
most. In our case, the nomogram suggests the
PH–ICU is the most important factor, fol-
lowed by PT–ICU BE–ICU and APPT–
WORST. Features BLEEDING–T and
TYPE–OF–CL seem to have much smaller
impact on the outcome. Interestingly, this is in
accordance with classification tree from Fig. 1,
which places the most relevant feature PH–
ICU on the top, and additionally uses APPT–
WORST.

5. Conclusion

This paper reports on a study, which has
attempted to construct outcome prediction
models from retrospective data of severe
trauma patients. The study should be regarded
as pilot since it only includes 68 patients.
Despite having such small data set, the follow-
ing conclusions can be drawn.
� A rather small subset of features from

trauma patient’s database seems sufficient
for modeling.

� Given a proper selection of features, prog-
nostic models for the outcome for severe
trauma patients are plausible.
Furthermore, we show that the feature

mining and machine learning techniques used
identified two factors, namely the pH value
when admitted to ICU and the worst partial
active thromboplastin time, to be of highest
importance for prediction. This finding is in
accordance with previously published theo-
retical results [13]. While in theory the pa-
tient’s body temperature should be another

Fig. 3. A nomogram derived from naive Bayes classifier.
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important predictive factor, other factors were
found more predictive in our data set. Notice,
however, that the work reported here was a
feasibility study. Although the model showed
good prediction accuracy, we must be cautious
about applying such models in clinical practice
because of the small number of patients. Fur-
ther studies with larger numbers of patients are
needed to confirm the results.

From methodological point of view, this
study has found feature categorization and
feature subset selection algorithms useful pre-
processing techniques. Categorization of most
relevant features was inspected and confirmed
by the expert. Expert also found the feature
rating by RELIEFF meaningful. This rating
helped him to decide, which set of features
should be used in the modeling data set. Both
naive Bayes modeling and derivation of clas-
sification trees resulted in models of reasonable
performance, with the models not being signifi-
cantly different in performance.

The main result of the study reported is the
observation that prognostic models can be
built for prediction of outcomes for severe
trauma patients. In future work, this finding
needs to be verified in a study that would
include a larger number of patients. The
present data set includes many features, and if
such comprehensive data collection poses
problems as our present data set with many
missing data suggests the outcome of this study
may help trauma personnel to focus mostly on
features that we have observed to be the most
relevant for prediction.
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[8] N. Lavrač, E. Keravnou, B. Zupan (Eds.), Intelli-
gent Data Analysis in Medicine and Pharmacology,
Kluwer Academic Publishers, Boston, 1997.

[9] J. Lubsen, J. Pool, E. van der Does, A practical
device for the application of a diagnostic or prog-
nostic function, Methods Inf. Med. 17 (1978)
127–129.

[10] P.J.F. Lucas, A. Abu-Hanna, Prognostic methods
in medicine (editorial), Artif. Intell. Med. 15 (2)
(1999) 105–119.

[11] D. Michie, D.J. Spiegelhalter, C.C. Taylor (Eds.),
Machine Learning, Neural and Statistical Classifi-
cation, Ellis Horwood, Chichester, UK, 1994.

[12] J.R. Quinlan, Induction of decision trees, Mach.
Learn. 1 (1) (1986) 81–106.

[13] M.F. Rotonda, D.H. Zonies, The damage control
sequence and underlying logic, Surg. Clin. North
Am. 77 (1997) 761–777.

[14] B. Zupan, N. Lavrac, E. Keravnon, Data mining
techniques and applications in medicine (editorial),
Artif. Intel. Med. 16 (1999) 1–2.


