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Introduction to Single-Cell Data Mining

Working notes for the single cell gene expression
analytics workshop at University of Ljubljana

These notes include Orange
workflows and visualizations we

will construct during the course.

The notes were written by
Martin Strazar and Blaz Zupan
with a huge help from the
members of the Bioinformatics
Lab in Ljubljana that develop
and maintain Orange. In part, we
have reused lecture notes for
Orange data science workshops
as published by the same group.

Welcome! We have designed this course for biologists interested in
interactive single-cell gene expression data analysis. You will see
how you can accomplish single-cell data mining tasks without
programming. We will use Orange and its bioinformatics and
single-cell add-ons to construct reproducible, shareable and visual
data mining workflows. The same functionality is also available in

application called scOrange.

If you haven't already installed Orange, please download Orange

from https://orange.biolab.si and its add-ons for bioinformatics and
single cell data analysis. After the installation, you may check out

introductory videos at https://www.youtube.com/
grgnggdgtgmining.

@ ® @ @ Attribution-NonCommercial-NoDerivs
CC BY-NC-ND


https://orange.biolab.si
https://www.youtube.com/orangedatamining
https://www.youtube.com/orangedatamining

File widget. Double click
to open it and select the

data set.
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A simple workflow with two
connected widgets and one
widget without connections. The
outputs of a widget appear on
the right, while the inputs appear
on the left.
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Lesson 1: Workflows in Orange

Orange workflows consist of components that read, process and
visualize the data. We call them “widgets”. Widgets are placed on a
drawing board (the “canvas”). Widgets communicate by sending
information along a communication channel. Output from one
widget is used as input to another.

@ First-workflow.ows

Data Table widget. Double
click the icon to see the
data in a spreadsheet.

The output of
Data Table sends
out any data
(rows) that are
@ selected in the
widget.
Data Table
; This output is not used, hence the
¥2§|g”f,’v‘i’ég°étt_he Data dashed line. You can add another

Data Table by clicking on its icon
from the toolbox on the left;
connect the output of Data Table

The communication to the input of the new Data Table
channel. It passes the (1) and check if the selected data
data from the File widget from Data Table are indeed sent
to the Data Table widget. to the downstream widget. This

demo works best if both widgets
are open, meaning their windows
are displayed.

. Awidget that has not

been connected to
any other widget.

We construct workflows by dragging widgets onto the canvas and
connect them by drawing a line from the transmitting widget to
the receiving widget. The widget’s outputs are on the right and the
inputs on the left. In the workflow above, the File widget sends
data to the Data Table widget.
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Start by constructing a workflow that consists of a File widget, two
Scatter Plot widgets, and two Data Tuble widgets:

Workflow with a File widget that

reads the data from disk and D

sends it to the Scatter Plot and Data Table

the Data Table widgets. The Data D D
Table renders the data in a

spreadsheet, while the Scatter Flle .;.:: Data Table (1)
Plot visualizes it. Selected data

points from the Scatterplot are Scatter Plot

sent to two other widgets: Data 230

Table (1) and Scatter Plot (1).
Scatter Plot (1)

The File widget reads data from your local disk. Open the File
widget by double-clicking its icon. Orange comes with several
preloaded datasets. From these (“Browse documentation data

sets...”), choose brown-selected.tab, a yeast gene expression dataset.

0@ D File
©File: | brown-selected.tab T & Reload
URL: [~ |
Orange workflows often start Info
with a File widget. The brown- 186 instance(s), 79 feature(s), 1 meta attribute(s)

Classification; discrete class with 3 values.
selected dataset comprises of

186 rows (genes) and 81

Columns (Double click to edit)

columns. Out of the 81 columns,

1 alphaO @ numeric feature
79 contain gene expressions of 2 alpha? @ numeric  feature
, .
baker's yeast under various 3 aipha 14 © rumeric  feature
conditions, one column (marked 4 apha2t © rumeric  feature
as a “meta attribUte") provides 5 alpha?28 @ numeric feature
gene names, and one column 6 alpha 35 [® numeric feature
contains the “class” value or —
gene fundlon' Browse documentation data sets Report

After you load the data, open the other widgets. In the Scatter Plot
widget, select a few data points and watch as they appear in the
widget Data Table (1). Use a combination of two Scatter Plot
widgets, where the second scatter plot shows a detail from a
smaller region selected in the first scatter plot.
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Following is more of a side note, but it won’t hurt. Namely, the

scatter plot for a pair of random features does not provide much

information on gene function. Does this change with a different

choice of feature pairs in the visualization? Rank projections (the

button on the top left of the Scatter Plot widget) can help you find

a good feature pair. How do you think this works? Could the

suggested pairs of features be useful to a biologist?

0@
Axis Data
Axis x: diau g E
Axis y: Elu 150 <]
_Rank projections _
Jittering: L 1%
Jitter continuous values
Points
Color: [3) function a
Label: | (No labels) ]
Shape: = (Same shape) E
Size: (Same size) a
Symbol size: 10
Opacity: 128
Set Colors

Plot Properties
Show legend
Show gridlines
Show all data on mouse hover

Show class density
Zoom/Select
b Qi

Auto send selection is on

Save Graph
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Orange reads data from Excel,
comma- and tab-separated files
and urls. Try constructing a
spreadsheet in Excel or in
Google Sheets. If using Google
Sheets, copy a shareable link and
paste it into the File widget.

Press Enter to load the data.
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Lesson 2: Loading Your Own
Dataset

The datasets we have worked with in the previous lesson come

with Orange installation. Orange can read the data from

spreadsheet file formats which include tab and comma separated

and Excel files. Let us prepare a toy dataset in Excel and save it on

a local disk.

o000 H v~ J ¥ Bmy-data Qv Search Sheet

Home Insert Page Layout Formulas Data Review

F2 . fx 52

A B c D E F G

1 CellID Type BCL2 CCRS D4 cp8 L2

2 |[TGATGATT damaged 6 31 76| sz_| 8
3 | TTAAGGCC normal 24 16 20 19 78
4 |CCGGAATT damaged 72 47 20 67 9
5 |CGCGAGTG damaged 71 25 11 38 65
6 GTAGCGTG normal 0 90 46 40 69
7 CGTAGCTG normal 9 6 95 36 46
o

4 » Sheet1 +

Ready ] ] o

©-

&+ Share

IL10

96
50
24

21
13

+ 100%

In Orange, we can use the File widget to load this dataset.

© File: | my-data.xisx

URL:

Info

File

6 instance(s), 7 feature(s), 1 meta attribute(s)
Data has no target variable.

Columns (Double click to edit)

& Reload

Name
1 Type
2 BCL2
3 CCR5
4 CD4
5 CD8
6 IL2
7 1L10

8 CelllD

Type

@ categorical
0 numeric
0 numeric
0 numeric
0 numeric
0 numeric
0 numeric

text

Browse documentation datasets

Role

feature
feature
feature
feature
feature
feature
feature

meta

Values

damaged, normal

Apply

2=

Looks good. Orange has correctly guessed that cell IDs are

character strings and that this column in the dataset is special,

meant to provide additional information and not to be used for any



o0 e

Info
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kind of modeling. All other columns are numeric features except
for the type, which is a categorical feature. This is also the feature
we would not like to include in the profile of the cell and should
rather consider it as a cell’s class. Double-click on the “feature” in
the Role column and change the role of the feature type to “target”.
Then click the Apply button.

It is always good to check if all the data was read correctly. We can
connect our Fzle widget with the Data Table widget,

D Data @

File Data Table

and double-click on the Data Tuble to see the data in the

spreadsheet format.

6 instances (no missing values)

Type

- 1 damaged
6 features (no missing values) 9
a o 2 normal
Discrete class with 2 values (no
missing values) 3 damaged
1 meta attribute (no missing 4 damaged
values) 5 'normal
6 'normal

Data Table
Cell ID BCL2 CCR5 CD4 cD8 L2 IL10
TGATGATT 6.0 31.0 76.0 52.0 8.0 96.0
TTAAGGCC 24.0 16.0 20.0 19.0 78.0 50.0
CCGGAATT 72.0 47.0 20.0 67.0 9.0 24.0
CGCGAGTG 71.0 25.0 11.0 38.0 65.0 2.0
GTAGCGTG 0.0 90.0 46.0 40.0 69.0 21.0
CGTAGCTG 9.0 6.0 95.0 36.0 46.0 13.0

Variables

Show variable labels (if present)
Visualize numeric values
Color by instance classes

Selection

Select full rows
Restore Original Order

EE

Instead of using Excel, we could
also use Google Sheets, a free
online spreadsheet alternative.
Then, instead of finding the file
on the local disk, we would enter
its URL address to the File
widget ‘s URL entry box.

Nice, everything is here.

There is more to input data formatting and loading. We can define
the type and kind of the data column, specify that the column is
actually a web address of an image, and more. But enough for now.
If you would really like to dive in for more, check out the

documentation page on Loading your Data, or a video on this

subject.


http://orange-visual-programming.readthedocs.io/loading-your-data/index.html
https://www.youtube.com/watch?v=MHcGdQeYCMg

| &
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Lesson 3: Saving and Sharing
Your Work

Add a box plot to your workflow from the previous lesson. Your

workflow should now look like this:

D Data Table

File

HIH+
HIH++

Box Plot

Orange can save your workflow to a file. Use Save or Save As from
the File menu and save your work to your desktop. Before saving,
you can describe your workflow on the information page using “i”
icon for the toolbar. We have named the file as my-workflow and
Orange would add a suffix to it. Now exit Orange and rerun it.
Select Recent in the welcome screen and choose from one of the

recently saved workflows.

[ ] @ Orange Data Mining
ﬁ Loading the data
This is a workflow to test if | can
load and process the data | have D
Welcome entered in Excel.
oo D Data Table
Templates
File E :
x
O
Box Plot
Path: /Users/blaz/Desktop/my-workflow.ows
Get Started —~
A D = v Ems
(i} on - L ™
Loading the data untitled Markers and
subpopulations
Show at startup Open Existing... New Cancel m

You can email workflow files or share them with your colleagues.
Note though that the data, unless stored on the web, has to be sent
separately.
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Lesson 4: Basic Exploration of
Single Cell Data

Use the Single Cell Datasets

widget and load the Cell cycle in Single-Cell Orange (scOrange) provides a quick-start interface to
mESC (Fluidigm) dataset with several recent datasets from single-cell RNA publications. In this
182 cells and a full set of 38,293 lesson, we will look at gene expression changes in the cell cycle
genes. stages of mouse embryonic stem cells.
[ JON ) Single Cell Datasets
_Info _ Filter
18 datasets |cel| cycle| |
5 datasets cached - Title | Size | Instances
* Cell cycle in mESC (Fluidigm) 3.7MB 182
Cell cycle in T-cells 4.3 MB 81
Cell cycle in T-cells (cell cycle genes) 220.2 KB 81
Cell cycle in mouse liver 125.9 KB 5
n Cell cycle in mouse liver (cell cycle genes) 3.5KB 5
Cell cycle in mESC (bulk RNA-seq) 287.0 KB 4
Mall cvucle in MEQE (hulk DNIA.can hnll.ﬁ\mln nan TNKR A
Description

Cell cycle in mESC (Fluidigm) (2015), from ArrayExpress

A single-cell RNA-seq dataset comprised of 182 mouse embryonic stem cells (mESCs)
with known cell-cycle phase. Cells were sorted using FACS for three different cell-

‘ O ’ cvcle ohases. This resulted in a filtered set of 59 cells in G1 phase. 58 cells in S ohase
[l

_J

You can get a first glance of the data — as before — with the Data

Table widget.
Info
182 nstances (no missing values) cycleStageName Gnai3 . Pbsn . Cdcas s H19 . Semi2 .
38293 features (no missing
values) 2 5 o] 10 0 0
Discrete class with 3 values (no 3 87 0 36 0 391
missing values) 4 49 0 72 0 3
No meta attributes 5 855 | 0 6 0] 0]
Single Cell Datasets Data Table s 137 0 374 0 0
Variables 7 733 0 782 0 32
. 8
V| Show variable labels (if present) s ! g ;0: g 1
| Visualize numeric values 715 i 1
v Color by instance classes 0 643 | 0 595 | 0 0
. . n 1083 0 12 0 0
Single cell data can use different selction » 5 0 1222 0 0
ofe . . | Select full rows 13 1250 0 21 0 0
quantification measures, like “ 3 o 304 o o
5 14 0 962 0 0
read counts or transcripts counts. . 524 0 4 0 31
7 177 0 761 0 7
Our cell cycle data includes read 0 6| 0 s 0 12|
19 0 0 242 0 5
countS. 20 36 0 866 | 0 333
2 169 0 5 0 0
22 42 0 1414 0 0
23 0 0 50 | 0 0
24 517 0 3 0 22
25 0 0 39 0 0
Restore Original Order 26 200 | 0 978 0 239
27 1 0 886 0 23
Send Selected Rows 28 0 0 256 0 50

2 E



]

@ Data Table
Single Cell Datasets
9 th.
Distributions

Set the Group By property to
cycleStageName to see the
distribution of counts for each of
the three subgroups of cells.
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The program scOrange stores the data tables with cells in rows and
genes in columns. For each cell, we have the count of sequence
reads associated with each of the vast numbers of genes. In other
words, we have a direct quantification of gene expression profiles.
There are a few things to notice here — what can we say about the

range of counts stored in the data table?

The counts vary wildly across cells, but also across genes — this is
a typical example of technical variance that is compensated with
downstream statistical methods. We can visualize the distribution
of counts with the Distribution widget. Select different genes and
see how genes generally either display very heavy-tailed

distributions of counts or are not detected at all.

Variable

G1
[ Gnai3 ® Gom
M Pbsn

[ Cdcas
M H19

@ scmi2
M Apoh
00 Narf 200
M cav2

M xife

M _comba

300 -

Density

Precision

100 -

Smooth Precise

Bin numeric variables

Group by
ol et e
Show relative frequencies (') 20‘00 4600

<

[@ cycleStageName

Show probabilities: (None) < Gnai3
¢ =l

Heavy-tailed and sparse data does not play well with conventional
data analysis techniques. In the next section, we will do something
about this.

But first, a short detour.
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Lesson §: Data Projection with

PCA and t-SNE

Looking at the values in a large table will
probably not get us very far — except if
you'’re a fan of a certain spreadsheet

pY ,-'.:: program. We can instead start with the
Principal component analysis (PCA), which
@ PG Soatier Flot is a way to quantify variance of different
directions in multi-dimensional data.
Single Cell Datasets - Selecting directions with the highest
o+ explained variance is one way to reduce
o the dataset size. If we consider only two
t-SNE directions — the two principal

components — we can visualize the data
in a scatter plot.

Note that ‘Normalized data’

checkbox is ticked off in the L ek ]
. .. Components: 2 z
PCA; simply standardizing the
. Variance covered: 65% [
gene expressions would 0.8 [ S -
I f » | —T 1 |
amount to some loss o Decomposition g 0gso| | —
information on relative ) PCA 2 o6
. Truncated SVD g
expression levels among s
Options .S
genes. Normalize data s 0.4
Show only first | 20 ] 2
0.2|0.240
0
| Apply automatically 1 3 5 7 9 n 13 15 1719

Apply N
DY Principal Components

2 € E

The first two components explain a gigantic 65% of the variance,
which is great, considering that we are dealing with 182-
dimensional data!

However, the large magnitude on the axes reminds us of the very
heavy-tailed distributions and raises an alarm that the projection
might be dominated by a small number of high count values. We

are postponing this problem to the next section.

10



A word of caution: t-SNE
essentially discards the true
distances between the cells.
Could the 2-D t-SNE coordinates
be used in further downstream

analyses, e.g. finding clusters?

Try to modify the Perplexity
parameter of the t-SNE plot.
How does this value influence
the visualization? What kind of
values are more suitable to
detect local structure and what
for global structure?

Single-Cell Data Mining April 2019
Axis Data
061
Axisx: | @PC1 < [oXe) oM
Axisy: | @ PC2 : 50000 ~ .
Find Informative Projections
[
Jittering: e 10%
Jitter numeric values 40000 (9] 1) [6)
e o 4 e
P
oints ~ 00 © A
Color: cycleStageName < @90 Q) )
20000
Shape: | (Same shape) S o 8 6] 1)
Size: | (Same size) : 5 Q% % ®
Label: | (No labels) s & L (o) 08@ (¢)
o ° # ®®Doo °
Symbol size: e o °
OpaCity:  =—— (8 Q
o 9 8o
Piot Properties -20000 ° ° o 1)
7 Show legend [6) Y -
Show gridiines o3t ©
Show all data on mouse hover o ° (6}
/! Show class density .
Show regression line 40000 ° (o) o ©
| Label only selected points Q %
Zoom/Select ° (% @° o)
-60000
5 IEENES o © ®o

0

] Send Automatically

100000
PC1

The PCA + Scatter plot combo shows a mixed result: there is

substantial overlap between cells in a different cell-cycle stage.

While PCA is a linear projection, the t-distributed Stochastic
Neighbour Embedding (-SNE) is a technique that is more suited to
how humans interpret 2-D projections. With t-SNE, the main goal

is to project very similar cells close together, while the distances

between dissimilar cells do not significantly

influence the

positioning. This relaxation prevents spherical structures as those

commonly seen in PCA, where the distances between points are

treated equally. Hence t-SNE can yield more clustered, grape-like

structures.

e0e t-SNE

Perplexity:

(J Preserve global structure

O
PCA —0 2

o

Color: cycleStageName
Shape: | (Same shape)

Size:

Label: (No labels)

°
(J Label only selection and subset ° o

<O R

I

<>

Symbol size:

Opacity:

i

Jittering

Show legend

(J Show color regions ‘ @)

Zoom/Select

BEIRI[E |

Normalize data o © OO

Oa1

OcG2m

{ Send Automatically ] L

2B B
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Single Cell Datasets Filter

By setting a lower bound on the
number of cells per gene, we
remove the genes that are
unlikely to significantly influence
the analysis. By removing the
very highly expressed genes, the
housekeeping (ever-present)
genes are removed.

A similar filtering can be
performed for cells by setting
the lower/upper bound on the

number of detected genes.
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Lesson 6: Data Filtering

As we have previously seen, single cell data is an expression matrix
with tens of thousands of genes and hundreds or thousands of
cells. A natural question to ask is whether all of the data is required

for further analysis.

Using the Filter widget, we can retain only the genes that are
expressed in a certain minimal or maximal number of cells. For this
example, let’s set the minimal/maximal threshold to 20/170 cells
(out of 182), respectively. From a total of 38,293 genes, we retain
11,932 genes. In other words, we can reduce the dataset size by
75%!

eoe Filter

Info

Gene Filter

Data with 182 cells and 38293 genes
11932 genes in selection

180
Filter Type

(OCells @ Genes () Data

[ Detection count

160

Filter 140

Plot Options .

Show data points
(] Log scale

120

100 ¥

80

60

Number of cells a gene is expressed in

40

20

. or
‘MJ

?

12



You can also try to use PCA
widget in the last step. How do

the coordinate axes change after

preprocessing?

0.005
0.004 -

0.003

Density

0.002

Gl
®c2m

|
|
-200 0 200 400 600 800 100

Ngfr

2 € E

The distributions show the

expression of gene Ngfr before

and after normalization. Notice
how we got rid of the long tail!

<
®caom

2 € E

10 12 14 16
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Lesson 7: Normalization

We can also tackle the technical variability issues. Due to a non-
uniform distribution of reads per cell, some cells will « priori have
larger counts associated to genes. A simple form of normalization
is achieved when the gene count profiles are scaled to have the
same median value for all cells. Alternatively, the same median
constraint can be imposed on groups of cells which in this case can
be defined as cells in the same cell cycle phase. We perform
normalization after the data filtering.

©) e {o) ih.

Single Cell Datasets Filter Single Cell Distributions
Preprocess
00 Single Cell Preprocess
Preprocessors 0 Logarithmic Scale

/~ Logarithmic Scale

[ Binarize Expression

. Normalize Samples

/. Standardize Genes

@ Select Most Variable Genes

Logarithm Base: [ 2 (Binary Logarithm)

Output

[ Send Automatically

? B

By scaling the cell expression profiles by a factor does not get rid
of the heavy-tailed gene expression distributions. To achieve this,

we use the following transformation:
y = logx + 1)

Why does this transformation make sense? What happens to genes
with an expression equal to zero in the raw and transformed data?

Try using Distribution widget to obtain the answer.

13
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To get a feeling of what the filtering and normalization do to the
data, let’s create a sequence of t-SNE plots after applying each of
the preprocessing steps. The preprocessing does quite a nice job,

focusing on the genes that might be important for separating cells
in different phases of the cell cycle!

| ! -
| \ .-

Single Cell Datasets

Filter Normalize t-SNE
) oc o
.. .;SZM () p
¢}
: : g e ° %
L. e °N% ‘
e ) 'Y o A °
° g o ®
@ LY ® ) [ ) 'Y
.‘O. o © ® ® 0 0 8,0
o $ el 8 * a3 ©
B o P oo e o ogffe o ° .
° L ® o ) ) °
e © @ e
) A J % ° = °° 'aoooo
00 ¢
) o%oo 8 ® a8 o
oBo 0 go
° > ) ® o
A OOOOO e o
(R e %
Filtered

Filtered + normalized

14
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Lesson 8: Marker Genes

Score Cells widget has two Gene markers are one of the common methods for discovering cell
inputs: the data and a set of populations, determining cell states (e.g. cell cycle) and more.
marker genes. Since both inputs Here, we will use a sample of the data on bone marrow

are data tables, how does it mononuclear cells with AML (Zheng et al., Nat Comm 2017), score

. NS ‘
know which one is which? the cells according to selected gene markers, and observe the

scored cells in the t-SNE plot:

Double-click on any of the edges
connecting the widgets to see
the actual wiring. You can rewire

the connections there. @
L % Edit Links . ' ; :
Single Cell Datasets 22,
B ON o (B
( ) Data O ( ) Score Cells t-SNE
Genes
E\El Genes  riia .
Marker Genes
Marker Genes Score Cells

The sample bone marrow dataset from Single

Cell Datasets widget includes 1000 genes and

1000 cells. There is a bigger dataset available
from the same widget (8000 cells), but let us
continue with the sample and define our workflow first. Then, you

are free to choose larger datasets.

[ NON | Single Cell Datasets

Info Filter

18 datasets
5 datasets cached

Title

Bone marrow mononuclear cells with AML (sample)

Bone marrow mononuclear cells with AML

* Bone marrow mononuclear cells with AML (markers) 308 bytes
* Cell cycle in mESC (Fluidigm) 3.7MB
a * Mouse retinal bipolar neurons (DropSeq, large) 11.0 MB
Dendritic cells and monocytes in human blood 18.3 MB
v
Description

Bone marrow mononuclear cells with AML (2017), from 10x Genomics

Gene expressions in bone marrow mononuclear cells from a patient with acute myeloid
leukemia (AML) and two healthy donors used as controls. The data includes over 8000

O ‘ cells and 1000 aenes with the hiahest dispersion. This is a data that comes with Louoe

(=)

A widget Marker Genes offers a list of markers and outputs a data

table with selected rows. You can test this by connecting it to Data

15



Marker Genes D

Data Table

In the t-SNE widget set the point
color to cell score. Open the
Marker Genes widget and
change the selected marker. See
the changes in the t-SNE widget.
We have just assembled a
workflow for interactive display
of the marker genes!
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Table, selecting some rows from Marker Genes and inspecting the
output of this widget in the Data Table. We can select one or
several marker genes at a time:

[ JON J Marker Genes
[ Human
|Filter.‘. |
Name Entrez ID Cell Type A Function Reference
EPSTI 94240 Megakaryocyte epithelial str... Butler et al. (2018)
CXCL10 3627 Megakaryocyte C-X-C motif ... Butler et al. (2018)

PPBP 5473 Megakaryocyte
S100A9 Monocyte
CD14 Monocyte
CD33 Monocyte

pro-platelet ...

Zheng et al. (2017)

Mediates the... CD Marker Handbook
Cell adhesio... CD Marker Handbook
S$100 calciu...  Zheng et al. (2017)
CD14 molec... Zheng et al. (2017)

S100A9 Monocyte
CD14 Monocyte

CD56 4684 NK cell Cell adhesio... CD Marker Handbook
NKG7 4818 NK cell Natural killer... Turman MA et al. (1993)
GNLY 10578 NK cell granulysin Satija et al. (2017)
NKG7 4818 NK cell natural killer ... Satiia et al (2017)

?

Widget Score Cells assigns a numerical score to each cell that is
proportional to an average expression of the marker genes at the
input of the widget. The score is added as a meta attribute to the
cell data on the output of Score Cells. Check this using the Data
Table! We can now feed this data into z-SNE and set the color and
size of the points to the cell score:

[ OK ) t-SNE

(J Preserve global structure

O 1
PCA —0 20
Normalize data

stape:

o
([ Label only selection and subset

ORORO

<>

Symbol size: _O_
Opacity: —_—
Jittering o

(J Show color regions
(J Show legend

ELEE |

( Send ically ) ]

BB
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To select all marker genes for a
particular cell type, specify the
type in the filter entry and press
Cmd-A.

Single-Cell Data Mining April 2019

We can now also study the marker genes in the cell cycle data from
the previous lesson. Make sure to change the organism in the
Marker Genes widget to mouse. You will notice that the differences

between cells are less pronounced. Use the following workflow:

@ N4 {S

Single Cell Datasets Filter Single Cell O t-SNE
Preprocess >~

Score Cells IIII

O

Marker Genes

Distributions

We would like to compare the scores of the cells for G2M phase
markers versus the G1/S, and observe if the distribution of the
scores does indeed match the types of cells and markers identified
in the original work. Open Marker Genes and in the mouse section
of the genes select those for G2M (use Filter field):

o [ ] Marker Genes

[ Mouse

lo2m| |
Name | Entrez ID | Cell Type A Function | Reference
Plk1 18817 Cell cycle/G2M polo like kina... Scialdone et al. (2015)
Aurka 20878 Cell cycle/G2M aurora kinas... Scialdone et al. (2015)
Cdc25C 12532 Cell cycle/G2M cell division ...  Scialdone et al. (2015)
Fzr 56371 Cell cycle/G2M fizzy and cell... Scialdone et al. (2015)
Nde1 67203 Cell cycle/G2M nudE neurod... Scialdone et al. (2015)
Ckap2L 70466 Cell cycle/G2M cytoskeleton... Scialdone et al. (2015)
Kif23 71819 Cell cycle/G2M kinesin famil... Scialdone et al. (2015)
Aurkb 20877 Cell cycle/G2M aurora kinas...  Scialdone et al. (2015)
Cdc20 107995 Cell cycle/G2M cell division ...  Scialdone et al. (2015)
H2Afx 15270 Cell cycle/G2M H2A histone ... Scialdone et al. (2015)
Cenpn 72155 Cell cycle/G2M centromere ... Scialdone et al. (2015)
~dr2ER 17R21 Call ArunlalINA rall diviicinn Qrialdana at al (2N1R)

2

The score distributions for different types of cells indeed confirm
the role of the markers: there is a difference in the mean
expression of the G2M phase markers versus the G1/S.

We can confirm that the markers indeed differentiate between
cells in the three different cycles. The differences, though, are not

very substantial.

Below is the distribution we obtain for G2M markers.
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[ JOX ) Distributions
Variable e
LU RP23-337J16.5 014
[ RpI31-ps25 ®G2Mm
[0 RP23-360N5.4 012
[0 RP23-368D4.5 S
[0 AC147987.1
[ AC129574.1 0.1
[0 RP24-361E14.1
M AC122013.1 . 0.08
) AC132389.1 £
M RP23-429118.1 g
e 0.06
Precision
SMOOth = ) Precise 0.04
() Bin numeric variables
0.02}
Group by
cycleStageName oF
() Show relative frequencies 6 3 7 3 8 1'0

Show probabilities: [ (None) [

?2BB

The following is a distribution we obtain for G1/S markers:

00 Distributions
Variable
0.2k Elell
WJ RP23-337J16.5 -
[ Rpl31-ps25 am ®G2m
[0 RP23-360N5.4 :
[0 RP23-368D4.5 0.16 S
[ AC147987.1
M AC129574.1 0.14
[ RP24-361E14.1
0 AC122013.1 0.12
>
[ AC132389.1 o
2 01t
M RP23-429118.1 2
0.08
Precision
Smooth ————)—————— Precise 0.06 |
(J Bin numeric variables 0.04
Group by 0.02}
cycleStageName o+
|

(] Show relative frequencies

Show probabilities: <

-1 0 1 2 3 4 5 6 7
Score

?2BB

On a single gene level, the difference between cell cycle phases is
very narrow but still visible. In the next section, we will introduce
methods for finding combinations of genes that will hopefully give
use a more clear separation of genes into different classes — cell

cycle stages.
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Lesson 9: Your Own Markers

The markers available in Marker Genes widgets were collected

from some publications and are by no means complete.
Researchers often use their own set of markers, either collected

from the literature or hypothesized on from their own research.

In this lesson, we will use Excel or some other spreadsheet
program to define our own set of markers for the AML data set.
Find “CD Marker Handbook” that is freely available on the
internet, use a spreadsheet program to enter the names of the
genes and their types, and use them in the Orange workflow. Your
data set could look something like the following:

marker type

cd3 T Cell
cd4 T Cell
cd8 T Cell
cd19 B Cell
cd20 B Cell

This time, use the File widget to open the data with a list of

D é @ markers. We need to convert the names of the genes to the
standard ID’s, and should use Gene Name Matcher widget:

File Gene Name Matcher Data Table
eoe Gene Name Matcher
Info Filter:
5 genes in input data
3 genes match Entrez database Inputid v EntrezID | Name | Description |  Synonyms | Other IDs
2 genes with match conflicts
cd4 920 CD4 CD4 molecule CD4mut MIM: 186940, HGNC: ...
cd8 925 CD8A CD8amolec... CD8, Leu2,.. MIM: 186910, HGNC: H...
Organism _ cd19 930 cD19 CD19 molec... B4, CVID3 MIM: 107265, HGNC: ...
[ Homo sapiens ‘
Gene IDs in the input data
.
Stored in data column
3
() stored as feature (column) names

Output

.
Exclude unmatched genes IDs from the input data without corresponding Entrez ID
) Replace feature IDs with gene names d3, cd20

Commit Automatically

?

Have all the names of the genes been successfully converted to the
IDs? Orange uses NCBI's data bases for gene name synonyms, and
it happens that the name, like cd3, is actually an alias for several
genes, hence matching fails. Check the result of the matching in
the Data Table.

19



Single-Cell Data Mining April 2019

Your final workflow with loader of your marker genes, cell scorer,
and t-SNE visualization of scores should not look like the

following;:

©

Single Cell Datasets 34+
’ Q £
Score Cells t-SNE

°
h 1
File Gene Name Matcher @
Data Table
Try choosing various genes or gene sets in the Gene Name

Matcher. You could also connect the output of the Data Table to
the Score Cells to provide the selection of the genes.

20



In the class, we will introduce
clustering using a simple data
set on students and their grades
in English and Algebra. Load the

data set from http://file.biolab.si/

files/grades2.tab.

D Data Table

i 2
File o
Scatter Plot
eoce T Data Table
Info
12 instances - Stk
2 features (no missing values) 1 Bl
No target variable. 2 Cynthia
1 meta attribute (no missing 3 Demi
values) 4 Ered
5 George
Variables 6 lan
Show variable labels (if present) 7 Jena
Visualize continuous values s [Kahenna
Color by instance classes
9 Lea
Selection 10 Maya
Select full rows 11 Nash
12 Phill

Restore Original Order

Report

Send Automatically

How do we measure the
similarity between clusters if we
only know the similarities
between points? By default,
Orange computes the average
distance between all their pairs
of data points; this is called
average linkage. We could
instead take the distance
between the two closest points
in each cluster (single linkage),
or the two points that are
furthest away (complete
linkage).

Single-Cell Data Mining April 2019

Lesson 10: Hierarchical
Clustering

Slight deviation here. We will use hierarchical clustering on single
cell data a bit later, but let us learn about this clustering method
first. We would like to identify groups of data instances (cells) that
are close together, similar to each other. Consider a simple, two-
featured data set (see the side note) and plot it in the Scatter Plot.
How many clusters do we have? What defines a cluster? Which

data instances belong to the same cluster? What would a procedure
for discovering clusters look like?

eoce # Scatter Plot
Axis Data
_ 100
Axisx: | [® English d Qena Qynlh\a
Axisy: (& Aigebra B
Score Plots % Qred
- Q,
Jittering: 10%
Jitter continuous values Q
o 80 an
Points
Algebra Color: (Same color) u
91.000 89.000 Label: [ Student | <] Q
51.000 100.000 Shape: | Sameshape) [ 70 atherine
9.000 61.000 Size: (Same size) | <] §
<
49.000 92.000 Symbol size: QQ
91.000 49.000 - 1 OO
91.000 82.000
39.000 99.000 Plot Properties
20.000 71.000 ZizlziE
Show gridlines 50
90.000 45.000 Show all data on mouse hover Qeovge
Show class density
100.000 32.000 Label only selected points Qn o
14.000 61.000
85.000 45.000 st o
25 BEVAREeY
Send Automatically Q

10 20 3 40 5 60 70 80 90 100
Save Image Report English

We need to start with a definition of “similar”. One simple
measure of similarity for such data is the Euclidean distance:
square the differences across every dimension, some them and take
the square root, just like in Pythagorean theorem. So, we would

like to group data instances with small Euclidean distances.

Now we need to define a clustering algorithm. We will start with
each data instance being in its own cluster. Next, we merge the
clusters that are closest together - like the closest two points - into
one cluster. Repeat. And repeat. And repeat. And repeat until you
end up with a single cluster containing all points.

21



0@
Linkage
Average
Annotation

B Student

Pruning

© None

Max depth: 10

Selection

Manual
© Height ratio: |33.0%
Top N: 3

Zoom

Output
Append cluster IDs
Name: Cluster

Place: = Meta variable

Send Automatically

Save Image Report

[ >

o

B

& Hierarchical Clustering
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This procedure constructs a hierarchy of clusters, which explains
why we call it hierarchical clustering. After it is done, we can
observe the entire hierarchy and decide which would be a good

point to stop. With this we decide the actual number of clusters.

One possible way to observe the results of clustering on our small

data set with grades is through the following workflow:

D A — % Scatter Plot

File Distances Hierarchical x ¥
Clustering é é
Box Plot

Let us see how this works. Load the data, compute the distances
and cluster the data. In the Hierarchical clustering widget, cut
hierarchy at a certain distance score and observe the
corresponding clusters in the Scatter plot.

You can also observe the properties of the clusters

10

-o

il

- that is, the average grades in Algebra and English
- in the box plot.

Bill

lan
Maya
Phill
George
Lea
Jena
| Cynthia
Fred
Katherine
Demi
Nash

eoce # Scatter Plot
Axis Data
100 )

Axisx: | [§ English o Jena Cynthia

Axisy: | (@ Algebra B
Score Plots % Ered

10 [ Bill
Jittering: 10 %

Jitter continuous values

80 lan
Points

Color: (3) Cluster

Label: 8 Student

}
Shape: | [ Cluster 70 Katherine

(o ol o ff o]

Algebra

Size: (Same size)
Symbol size:
Opacity: 60 "DemNash

Plot Properties

Show legend

Show gridlines 50
Show all data on mouse hover

Show class density X X
Label only selected points PhillLea

George

Zoom/Select 4} 22
i NEVAREeY

N i 55
Send Automatically 10 20 30 40 50 60 70 80 90 100

Save Image Report English



Single-Cell Data Mining April 2019

Lesson 11: Animal Kingdom

Your lecturers spent substantial part of their youth admiring a
particular Croatian chocolate called Animal Kingdom. Each
chocolate bar came with a card — a drawing of some (random)
animal, and the associated album made us eat a lot of chocolate.
Then our kids came, and the story repeated. Some things stay
forever. Funny stuff was we never understood the order in which
the cards were laid out in the album. We later learned about
taxonomy, but being more inclined to engineering we never
mastered learning it in our biology classes. Luckily, there’s data
mining and the idea that taxonomy simply stems from measuring

the distance between species.

Do a)r{e) (=) (=

File Distances Héﬁ:{gﬂiﬁ;l Sieve Diagram Data Table
Here we use zoo data (from documentation data sets) with
attributes that report on various features of animals (has hair, has
feathers, lays eggs). We measure the distance and compute the
clustering. Animals in this data set are annotated with type
(mammal, insect, bird, and so on). It would be cool to know if the
clustering re-discovered these groups of animals. We can do this
through marking the clusters in Hierarchical Clustering widget,
and then observing the results in the Sieve Diagram.

[ JON ] Hierarchical Clustering [ XOX ) Sieve Diagram
e E . 0 Bx Bouser
Average
A ‘pla(ypus
Annotation tortoise ’:Hq ‘ ‘ | | ‘ ‘ ‘
| c9
. sl
B name sealion I Y Y O W I
. dolphin
Pruning porpoise ca —
© None girl [epe_—e—————— = =
v R gorilla
Max depth: 10 < wallaby — —
squirrel
Selecti fruitbat €6 —| -
election N
vampire L
~ Manual f‘a"yt
~ amster — | L
© Height ratio: 74.7% 9 mole
el 3 - opossum
°op mink H C57
aardvark a ]
Zoom bear 2 == = — L
wolf © CAI | ‘ @
........ raccoon |
puma
polecat —
mongoose
lynx —
— lion
leopard c3 ]
boar
cheetah — -
pussycat
reindeer ] 1
Output pony
Append cluster IDs calf - —r —
goat 2 | e
Name: Cluster oryx c1— S S S S | S | S | S S S S S S S S S ] s
Place: Meta variable gl‘;apfr:m amphibian  bird fish  insecinvertebrate mammal reptile
deer N =101 type
Send Automatically antelope 2
buffale ¥2=454.42, p=0.000 23
i T [
Save Image Report 2 1 0 Save Image Report
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Looks great. Birds, say, are in cluster C6. Cluster C4 consists of

amphibians and some reptiles. And so forth.

Checking this in the Box plot is even cooler. We can get a

distribution of animal types in each cluster:

[ JOX ) Box Plot

Variable

domestic 1 m 2

C tsi;

@ catsize mammal

type c2 4

Clusts

uster mammal

1
Order by relevance cs 36

amphibiaeptile

Subgroups c4 7

= fish reptile

tail c5 14

domestic bird

catsize co I 20

type invertebrate

Cluster c7
invertebrate

Display c8 7

Stretch bars insect invertebrate
Cc9

Send Automatically

0 5 10 15 20 25 30 35 40
Save Image Report

Or we can turn it around and see how different types of animals

are spread across clusters.

Variable

domestic
catsize
type
Cluster

Order by relevance

Subgroups
tail
domestic
catsize
type
Cluster

Display
Stretch bars

Box Plot
ca
amphibian 4
cé
bird I 20
C5
fish 13
Cc9
insect NN 8
Czr8 c9
invertebrate | NN 10
ct2 Cc3
mammal 1 I 41
CTC4 C5
reptile 5
0 5 10 15 20 25 30 35 40 45

Send Automatically

Save Image

Report

What is wrong with those mammals? Why can't they be in one
single cluster? Two reasons. First, they represent 40 % of the data

instances. Second, they include some weirdos. Click on the clusters

in the box plot and discover who they are.

24



Single-Cell Data Mining April 2019

Lesson 12: Discovering clusters

Can we replicate this on some real data? Can clustering indeed be

useful for defining meaningful subgroups?

Take brown-selected (from documentation data sets) connect the
hierarchical clustering so the you can see a cluster as a subset in
the scatterplot.

A =

Distances Hierarchical
Clustering

h A

File Scatter Plot

So far, we used the dendrogram to set a cut-off point. Now we will
click on a branch in a dendrogram to select a subset of the data
instances. By combining it with the Scatter Plot widget, we get a
great tool for exploring the clusters. Try it with an appropriate pair
of features to visualize (use Rank projections).

0@ & Hierarchical Clustering
Linkage 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
- . . ; . 1
Complete : n
H YLR406C
YDLO83C
Annotation YOL127W
8 gene B YOR182C
YJL18ow
. YKR094C
Pruning YDR447C
© None YLR325C
~ YKL156W
Max depth 10 o YHR141C
YiL148W
N YIL0O69C
Selection YPR102C
© Manual YGR148C
. 3 YGR118W
Height ratio 1 75.0% YMLO63W
Top N 3 YLR441C

YGR085C
YLR167W
YLR333C
YGL147C
YGL189C
YGLO31C
YLR388W
YKRO57W
YPRO43W
YLR185W
YGR027C
YOR234C

Output
Append cluster IDs

Name Cluster

Place = Meta variable

Auto send is on

—

Save Graph 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

=]

By using a scatter plot or other widgets, an expert can determine

whether the clusters are meaningful.

For this data set, though, we can do something even better. The

data already contains some predefined groups. Let us check how
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well the clusters match the classes - which we know, but clustering
did not.

We will use the dendrogram to set a suitable threshold that splits
the data into some three to five clusters. We can plot this data in a
new scatter plot; we find a reasonable pair of attributes and then
set the color of the points to represent the cluster they belong to.
Do the clusters match the actual classes? The result is rather
impressive if you keep two things in mind. First, the clustering
algorithm did not actually know about the classes, it discovered
them by itself. Second, it did not operate on the picture you see in
the scatter plot and in which the clusters are quite pronounced,
but in a 79-dimensional data space with possibly plenty of
redundant features. Yet it identified the three groups of genes
almost without mistakes.

This lessons is not a recipe for what you should be doing in
practice. If your data already contains groups labels, say gene group
annotations, there is no need to discover them (again) by using
clustering. In this case you should be interested in predictive
models from previous lessons. If you do not have such a grouping
but you suspect that the data contains distinct subgroups, run
clustering. The sole purpose of this lesson was to demonstrate that
clustering can indeed find a meaningful subgroups in the data; we
pretend we did not know the groups, use the clustering to discover

them, and checked how well the correspond to the actual groups.

26



Datasets

=

Continuize

A n=

Hierarchical
Clustering

Distances

Single-Cell Data Mining April 2019

Lesson 13: Cluster Interpretation

Once we have inferred the clusters, we would like to know what
are the distinguishing features. For the zoo data set, we could, for
instance, mark two clusters, and then ask for the features that
distinguish among these. Having data marked with cluster
identifiers takes us back to classification, and we can use any of
visualization, model inference, or feature ranking techniques we
have introduced there. Here, we will show how to use ranking to
infer what features characterize the group of mammals when

compared to a close cluster of other species.

We load zoo data from Datasets, continuize

Eﬁ Al

Select Columns Rank

the categorical features (this will be changed
in Orange soon, Distances should
automatically perform continuization),

estimate the distances, and feed everything in

o0 e Hierarchical Clustering . . . A
. , : . Hierarchical Clustering. So far, nothing new.
In the hierarchical clustering, we choose two
clusters. Note that Hierarchical Clustering adds
cluster identifier as a meta feature; to make the
data ready for classification-specific tasks, we
need to promote cluster identifier into target
[é e variable (a class) by reassigning the feature types
Es in Select Columns.
o
1352125;3:2 [ XON ] Select Columns
l:iiig Available Variables Features
EEEEE;WE Filter G [ hair=Yes
1:25;1 - [0 feathers=Yes
e (0 eggs=Yes
o Pown " [ milk=Yes
3 i 1 (5 Target Variable
2 BB Up Cluster
<
Use modifier keys (command) to Down
select different branches of the Meta Attributes
dendrogram and mark them as Up name
< type
separate clusters. Done correctly,
. . . . Down
Hierarchical Clustering will mark
the branches with different
Reset Send Automatically
colors.
?2 B
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The data is now ready for classification-based analysis. Here, we

used a rank widget.

[ NON ) Rank
#  Gainratio v Gini

) milk=Yes
[ eggs=Yes
[¥) toothed=Yes
[ hair=Yes
[ backbone=Yes
00 tegs ___ 0329 ___0.244
[ breathes=Yes - 0323 _ 0.077
00 tail=Yes __ 0310 ___ 0181
[ venomous=Yes - 0.297 _  0.060
[ catsize=Yes - 0.273 __ 0.162
[ aquatic=Yes - 0.245 __ 0116
[ airborne=Yes - 0126 _ 0.048
[ fins=Yes - 0.090 , 0.005
[¥) domestic=Yes - 0.068 , 0.023
[ predator=Yes . 0.005 | 0.003
[) feathers=Yes . 0.000 |, 0.000

? B
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Be patient! Loading Excel data
files is not the fastest operation
in Orange, especially for large
data files like single-cell ones.
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Lesson 14: Hierarchical

Clustering on Single Cell Data

Let us apply our clustering skills on a recently published data on a

social amoeba called Dictyostelium on “Cell Cycle Heterogeneity

Can Generate Robust Cell Type Proportioning”. Go to

sciencedirect.com and search for “Nicole Gruenheit” to find the

homepage of the paper. Download the first data Excel file from the

supplement. The file has multiple worksheets, with the first one

containing the count data, and the second one containing

normalized data. We’ll work with the normalized data. To avoid

confusion, let’s first isolate it by copying it into a new file with a

single worksheet: select all data from the “normalized data”

worksheet, copy, open a new file and paste. Save this file in the

desktop and name it, say, dictyxlsx.

We could use the File widget to load this data set, but will use a

more specialized widget called Load Data from single-cell add-on.

Add this widget to Orange canvas, open it, and then just drag the

icon that represents dictyxlsx file onto it:

Headers and Row Labels

Data starts with D header row(s)

First column(s) are row labels

Input Data Structure

© Genes in rows, cells in columns
(O Cells in rows, genes in columns

Sample Data

Ofe_J
Ofe_]

% of genes

Cell & Gene ion Files

() Cell annotations

() Gene annotations

oo e Load Data
Add file: [u' Recent files [ Browse... ]
v File | Source Name | Cells | Genes | Size | Sparsity |
v dicty.xlsx dicty.xlsx 11320 9.2 MB ~26 %
Output genes: ° Intersection O Union { O Load Data ‘

2B

Now, filter out the genes that are expressed in less than 30 cells.

Next, we will set up the pipeline for clustering. We will use the

cosine distance (in Distances widget) and Ward linkage for

hierarchical clustering:
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o) Y A =

Load Data Filter Distances Hierarchical
Clustering

How many clusters are in this data? Compare the assignments of
clusters to those that were reported in the paper (you will find the
cluster assignment in one of the sheets in the downloaded Excel
file). Are the clusters separable in the t-SNE visualization? How
about in the visualization defined by first two principal

components?

Instead of Hierarchical Clustering, check out k-means clustering
Louvain clustering. Take some time to explore these two widgets.
Perhaps, given time, we would say more about these two clustering
methods in the class, but if you are just a reader of these lines, you
could check out related videos on the Orange’s YouTube channel,
where k-means clustering is explained in the detail.

30



Single-Cell Data Mining April 2019

Lesson 15: More Clustering and
Population Discovery

We will again use a sample from A typical task with a huge single cell dataset is to automatically
Bone marrow mononuclear cells determine clusters of cells. An advanced method that does this is
with AML with 1000 cells that Louvain clustering. Given the expression matrix, Louvain

contain 1000 most variable clustering creates a network of cells based on pairwise distances.
genes.

Then, it searches for local communities — the parts of the
network that are more strongly interconnected than expected by
chance (think of friendships on social networks). Each local
community is a cluster and genes are assigned cluster labels

accordingly.
In Orange, Louvain clustering is in its own widget
.
: _ _ i that appends a column of cluster labels to the cell
.-
@ o @® ' : data. Quite neatly, the number of clusters is
) t-SNE determined automatically. Let us construct a

workflow that displays the results of the clustering
in the t-SNE plot and that examines the frequency

Single Cell Datasets Louvain Clustering

=

of the cells in each of the clusters. Let us observe

Distributi
swibutons . SNE plot first.

00 t-SNE

() Preserve global structure

Louvain Clustering has a number

of parameters. Here, we will stay

with defaults, but you can on: O 1

experiment, change them and peA D@ 2
. @ Normaliz

see the effect in t-SNE

visualization.
Color:

Shape:

. . - Size: (Same size)
® © ® Louvain Clustering ot (o

o
() Label only selection and subset

D B

I

<>

PCA Preprocessing

Apply PCA preprocessing Symbol size:
Components: ={ je———— 25 j’;:::“;

() Show color regions l

i

() Show legend

Graph parameters

Distance metric [ ’ olE
B | ‘
k neighbours @

[ Send Automatically ] ]

Resolution @ 2B E

Apply Automatically
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We have colored the points (cells) in t-SNE according to the
cluster membership. Notice a nice separation of the clusters in the
t-SNE plot. It looks like the cells are also well-separated in the
original space of features (genes). A common mistake would be to
compute the data projection first and then cluster the projected
points. Obviously, then, the clusters would be separated perfectly
and there would be no overlap.

We will now use Distributions widget to observe the frequency of

the cells within each cluster.
ece

Variable
ey
0 sceP1

(M BOLA3-AS1
[0 S100A3

0 PrCI

0 T™CC1-AS1
0 ccocigt
Type
Replicate
{9 Cluster
Precision

8
2 50 6
[C) Bin numeric variables into 10 bins a
2 I"l
[ (None) ol

V) Show relative frequencies

Distributi

TCPTUC

200

180

140

120

100

Frequency

o

(=]

o

o

(o]

L L L L L L L L L L L L L
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C1 C12 C13

Show probabilities: | (None) < Cluster

2EE s

We can see that the number of cells in a cluster is quite
unbalanced, ranging from -220 to a few tens of cells.

We can focus on the larger clusters

(and, in a way, remove outliers) by
removing the clusters C8 - Cr3.

Single Cell Datasets Louvain Clustering ~ Select Rows t-SNE Hint: compare the effect of this
eoe Select Rows filtering using a t-SNE plot (see
Conditions screenshot on the left)!
Cluster is one of c1, €2, ¢3, ¢4, €5, Cb.,
c1
c2
c3
Add Condition ca ‘
c5
Data C6

In: ~1000 rows, 1005 va
Out: ~762 rows, 795 var

I
(2]
N

c8
co

~an

Send automatically

Send

2l =
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Lesson 16: Differential Gene
Expression

How to tell whether clusters make biological sense? One way is to
use marker genes, as before, to identify interesting clusters. And
then we have to analyze what, besides the marker genes, makes the

cells in the clusters special.

For this analysis, our staring workflow will use clustering, cell

scoring and t-SNE visualization:

We could first score cells and
then do the clustering, but in the

current implementation the @ @®

workflow on the right is faster as

Q

Single Cell Datasets Louvain Clustering
Louvain does not re-cluster every

. Score Cells t-SNE

time we change marker genes. ‘ )

(XX J Marker Genes Marker Genes

[ Human

b cel | We will choose two marker genes for B cells and set the t-
Name | Entrez ID | Cell Type A

SNE visualization to color the points by cluster
assignments and associate the size of the points to cell’s

score.

[ OK ) t-SNE
NME1 4830 B cell activated | Perplexity:
MIR155HG 114614 B cell activated (O Preserve global structure P o
BCL11A 53335 Plasmacytoid denc i O 1 g L

@,

BLNK 29760 Plasmacytoid denc pca ts: ——() 20 . o@%@

Normalize data e Job 8

R oo
? T o g% ’
Q’@ o) .

cobr B0

Shape: of 5Y

Labe 2 ;&5@

(J Label only selection and subset ° &6 ?
00
o

Symbol size: =——ee) °o @bﬁ

Opacity: @ ° °°o°

Jittering Oo—lo

gg o OQ) ° o
() Show color regions ° o @ 0803
() Show legend %o &
00 ey

[ /Select @ \E‘ }

[ Send Automatically ]
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The workflow visualization in
Orange can also report on the
types of inputs and outputs that
get connected. Use Preferences
from Orange menus and click on

"Show channel names between

widgets”.
o O
Q’b
esss
E:: Data Table
2
t-SNE ¢ {\
Differential
Expression
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We find that B-cells are spread across several clusters (say, the

green, yellow and light orange one). We can dig in further to find
out which genes actually separate the clusters:

1. Use the mouse to select both B-cell clusters (use Shift+Cmd to
append to clusters). On the output, in the Data channel, this
selection will introduce the new column called Selected and
mark the selected cells with Selected = Yes and all other cells with
Selected = No.

2. Check the output data in the Data Table widget.

3. Connect the t-SNE output “Data” to the Differential Expression
widget. Set the Label (in the Target Labels section) to Selected and

choose Gr and Gz as target values.

o) {% =

O o3ts Data Table
Single Cell Datasets Louvain Clustering — H
: Score Cells t-SNE (\
. ial
Marker Genes E;‘;?;Z’;E}fn

Notice that by default, Orange will connect t-SNE and Data Table
through Selected Data channel that contains only the selected data.
We need to change this, if we want to use the Data channel
instead, since there are all the instances of the dataset and the data
includes the Selected column. We need to rewire the connections
by double-clicking on the t-SNE-Data Table channel:

o 99 Edit Links

(1]
P9 Selected Data

:o: Data

o0 Data

t-SNE Data Table

Clear All Cancel “

We should do the same for the connection between t-SNE-

Differential Expression widgets.
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Since our genes are in the
columns, Differential Expression
would output the data with
columns that include only the
selected genes. Check this out in
the Data Table.

We have set the scoring method
to log2(Fold Change) and set the
Label to Selected. Differential
Expression also compares the

Spoiler alert: see the final t-SNE
projections and the complete

workflow on the next page.

The distribution marked with
grey line shows the null
distribution, the distribution of
genes scores expected by pure
chance.

i

Data Table

A&

Gene Name Matcher

go

GO Browser

Differential
Expression
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Differential expression shows the distribution of the differences of
gene expression in selected and all other cells:

[ ] o Differential Expression
Info 180

1000 samples, 1000 genes
Sample target: 'No*

163 of 1000 scores undefined. 160
360 selected genes
Scoring Method
140
log2(Fold Change) d
Target Labels
120
Label
@ Selected 8
Values 100

No
Yes

Counts

80

Selection

60 Yes No
Upper threshold: 1.000000 z
Lower threshold: -1.000000 z
Compute null distribution 0
Permutations: 20
a-value: 0.0100000 Select
Best Ranked: 20 z Select 20
Output
ok
8 6 4 -2 0 2 4 6

Add gene scores to output
Score

RBEE

Differential Expression widget outputs the data with genes that are
in extremes of the distribution. That is those, for which the
difference in selected and non-selected cells is the largest. Genes
that are most differentially expressed, lie on the left and on the
right side of the two vertical splitters and their score value belongs
to the shaded part of the distribution. Move the two vertical
splitters such that there are only 50 selected genes.

So, where are the genes that are selected in the Differential
Expression widget? In the output of the widget. We can observe the
new dataset and analyze the set of selected genes with widgets that
we connected to Differential Expression. Observe the data in the
Data Table, a list of selected genes in Gene Info and the results of
analysis of Gene Ontology term enrichment in GO Browser.

Gene Info displays the list of selected genes. Notice that not all
gene names from the selection in Differential Expression were
matched to the NCBI’s database:
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00 Gene Info
Info Filter
50 genes

47 matched NCBI's IDs

Organism

Homo sapiens B

Gene names

Gene attribute

<O

Type

Use attribute names

NCBI ID
9935
9911
971
933

831

930
929
911
83478
8115
79887

v  Symbol
MAFB
TMCC2
CD72
CD22
MS4A1
CcDp19
CD14
CD1C
ARHGAP24
TCL1A
PLBD1

Locus Chromosome

20

Description

MAF bZIP transcription factor...
transmembrane and coiled-c...

CD72 molecule
CD22 molecule

membrane spanning 4-domai...

CD19 molecule
CD14 molecule
CD1c molecule

Rho GTPase activating protei...

T cell leukemia/lymphoma 1A

phospholipase B domain cont...

Synonyms
|[DURS3|KRML|MCTO|
|[HUCEP11|
|CD72b|LYB2|
|SIGLEC-2|SIGLEC2|

[B1/Bp35|CD20|CVIDS|LEU-1...

[B4|CVID3|

|BDCA1/CD1/CD1AIR7|

|[FILGAP|RC-GAP72|RCCAP7...

[TCL|

Select Filtered

Clear Selection

To validate the biological meaning of differentially expressed

genes, we use one final widget: GO (Gene Ontology) Browser. Here,

we compute the enrichment of biological terms that are pertinent

to our subset of selected genes. For B-cells, we expected to find

genes related to the immune system. And so we did.
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@
m Filter Select
Infe

50 unigue genes on input
45 (90.0%) genes with known annotations

Ontology/Annotation Info

Organism

Homo sapiens

v
Gene Names

B Barcode
Use column names

<

Reference

© Entire genome
Reference set

Aspect

© Biological process
Cellular component
Molecular function
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GO term

¥ immune system process
leukocyte activation
immune response
v immune effector process
v leukocyte mediated immunity

v

myeloid leukocyte mediated immunity

v neutrophil mediated immunity
neutrophil degranulation

regulation of leukocyte mediated immunity

positive regulation of leukocyte mediate...

lymphocyte mediated immunity

regulation of lymphocyte mediated im...

positive regulation of humoral immun...
T cell mediated immunity

positive regulation of lymphocyte me...
regulation of humoral immune respon...

emadissenammbadion oL T o ol oo liodool

Cluster

29 (64.44%)
19 (42.22%)
21 (46.67%)
15 (33.33%)
12 (26.67%)
9 (20.00%)
9 (20.00%)
9 (20.00%)
3 (6.67%)
2 (4.44%)
3 (6.67%)
3 (6.67%)
1 (2.22%)
2 (4.44%)
2 (4.44%)
1 (2.22%)

A ANy

GO term

immune system process

leukocyte activation

cell activation

immune response

immune effector process

regulation of immune system process
lymphocyte activation

leukocyte mediated immunity

leukocyte activation involved in immune response
cell activation involved in immune response
lymphocyte proliferation

mononuclear cell proliferation

neutrophil degranulation

regulation of immune response

neutrophil activation involved in immune response
leukocyte proliferation

Cluster

29 (64.44%)
19 (42.22%)
19 (42.22%)
21 (46.67%)
15 (33.33%)
16 (35.56%)
11 (24.44%)
12 (26.67%)
11 (24.44%)
11 (24.44%)
7 (15.56%)
7 (15.56%)
9 (20.00%)
12 (26.67%)
9 (20.00%)
7 (15.56%)

Reference p-value ~ FDR
2834 (14.66%) 3.7e-14 5.5e-11
1143 (5.91%) 2.5e-12 1.9e-09
1973 (10.21%) 5.0e-10 1.9e-07
1153  (5.97%) 2.7e-08 7.9e-06
787 (4.07%) 1.7e-07 3.1e-05
540 (2.79%) 3.7e-06 2.5e-04
498 (2.58%) 1.9e-06 1.6e-04
485 (2.51%) 1.5e-06 1.6e-04
164 (0.85%) 0.00665  0.0673¢
97 (0.50%) 0.02162 0.11890
270 (1.40%) 0.02502 0.1240%
122 (0.63%) 0.00293  0.0438
4 (0.02%) 0.00927  0.0754(
77 (0.40%) 0.01403 0.0943:
78 (0.40%) 0.01437 0.09501
10 (0.05%) 0.02302 0.12176
AT IO onny  6.onnnn.. N AssAn
Reference p-value ~ FDR
2834 (14.66%) 3.7e-14 5.5e-11
1143 (5.91%) 2.5e-12 1.9e-09
1280 (6.62%) 1.8e-1 8.9e-0¢
1973 (10.21%) 5.0e-10 1.9e-07
1153  (5.97%) 2.7e-08 7.9e-06
1465 (7.58%) 9.1e-08 2.2e-05
604 (3.12%) 1.1e-07 2.2e-05
787 (4.07%) 1.7e-07 3.1e-05
666 (3.45%)  2.8e-07 4.4e-08
670 (3.47%) 3.0e-07 4.4e-08
232 (1.20%) 1.7e-06 1.4e-04
234 (1.21%) 1.2e-06 1.4e-04
485 (2.51%) 1.5e-06 1.6e-04
974 (5.04%) 1.6e-06 1.6e-04
488 (2.52%) 1.6e-06 1.6e-04
251 (1.30%) 1.8e-06 1.6e-04

an oa

M

ake sure you have selected Use

column names in the GO

Browser to indicate where to

lo

ok for gene names. Also, make

sure that the right organism has

been selected.

Our final workflow is as shown below. Try choosing other markers,

select other clusters of cells, and observe the changes in the

content of the widgets in our workflow.

Si

©) ®

ngle Cell Datasets Louvain Clustering

O

Marker Genes

©)

Score Cells

..

t-SNE

A

Differential
Expression

O

Data Table
=
<
Gene Info

GO

GO Browser
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Load the familiar Cell cycle in
mESC (Fluidigm) dataset with
182 cells and a reduced set of
pre-selected 564 genes. You can
experiment with a dataset with a

full collection of genes later.

Single Cell Datasets Data Sampler

We could normalize the data first
and then send it to Data
Sampler. But that would be

conceptually wrong. Why?

We can force Data Sampler to
always return the same sampling
under the same sampling
parameters by choosing
Replicable (deterministic)

sampling.

Options

Replicable (deterministic) sampling
Stratify sample (when possible)

Single-Cell Data Mining April 2019

Lesson 17: Predictive Modeling

Once cell types or other cell classification are determined,
automatic classification models can be used to predict the type of
new, unlabelled cells. In this lesson, we will build a simple linear
classification model to predict cell cycle stage and learn about the
techniques to score the accuracy of our models.

To predict, we need two dataset: one on which to build a model
and a separate dataset on which to make predictions. We can
simulate this process by splitting our cell cycle dataset to two: the
training and test set — the former will be used for model inference
and the latter for evaluation. Evaluation will compare the predicted

cell cycle stage to the “true” one in the test set.

-~
@
,.33«\9\ Data
A2 N va

0?0

=
o
. ) &
Normalize Logistic Regression -
-
©Ma; R
Maipyp, 3
alg =3
ar, S )
4 @ Evaluation
Results v %
v on
== x u
Predictions Confusion Matrix

We will use Data Sampler widget to split the data such that 70% of
the data will go into the training set and the remaining 30% of the
data to the test set. Data Sampler uses two output channels, and
we have to make sure that the right data channel is used. Here is
our workflow with annotated communications channels:

The modeling branch of the workflow first normalizes the data,
and sends the normalized data to the Logistic Regression, a widget
that builds the predictive model. Our data includes a special
column called CycleStageName and it is this variable that will be
modeled from variables that profile the cell, that is, from gene

expressions.

The prediction branch of our workflow takes the remaining data
and uses the developed model to predict the cell cycle stage. The
predictions are made in the Predictions widget. Logistic regression
predicts probabilities for all the classes in the input data and we
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can observe these in the Predictions:

To compare predictions with the LA X Predictions

Info Logistic Regression cycleStageName Gnai3 Cdc4s Cer

true class, compare Logistic

Data: 54 instances. 1 0.36:000:064->5 |8 0 581 0
i eI 2 0.00:0.01:0.99 S s 466 110 0

Regression column to the Task: Classification :00:0.01:0.
- - 3 0.00:0.00:1.00 %S s 492 78 0
column CycleStageName. The 4 0.99:0.00:001>G1 | Gl 200 978 1
. . 5 1.00:0.00:0.00-G1 | Gl 49 72 1

widget Predictions also outputs a Show
P 6 0.42:0.46:0.12>G2M | G2M 4 227 0
data table with prediction results Predicted probabilities for: |7 0:89:0.00:0.11>G1 |61 1 886 1
lere 8 0.00:0.00:1.00>S s 40 212 0
Gl
that store probabilities and Y 9 0.90:0.02:0.07>G1_ | G2M 814 194 0
predictions and these may be S 10 0.00:1.00:0.00 > G2M | G2M 12 16 0
. | M 0.00:0.68:0.32>G2M G2M 47 29 0
analyzed in other Orange’s 12 0.00:0.94:0.06>G2M | | G2M 1283 533 1
widgets. I 13 0.00:1.00:0.00 > G2M | G2M 29 1086 0
Bata v 14 000:0.06:094->S 'S 303 323 0
¢ N

— 15 0.02:0.98:0.00 > G2M | G2M 441 0 0
Show full dataset 16 0.01:0.00:0.99 S S 179 515 1
o 7 0.99:0.01:0.00>G1 | Gl 5 1242 0
Original data 18 0.92:0.02:0.05>G1_ | Gl 855 6 1
S 19 0.01:0.00:0.99 > S s 844 2160 0
Probabilities 20 0,00:0.11:0.89 > S s 126 650 0
21 _NAN-10N-N NN S AN | (BIM 222 1490 1

aE

Notice that the predictions (Logistic Regression column) are
mostly correct. There is one error in row 9 where G1 was predicted
instead of the true class G2M and where the probability assigned
to the true class by logistic regression was only 0.02.

It would be hard to find all correct and false predictions from the
table provided in Predictions widget. A better way to summarize the

results of prediction is with Confusion Matrix:

0@ Confusion Matrix
Logistic Regression Show: Number of instances E

G1 G2M S b3
G1 17 1 2 20
T;u G2M 1 16 0 17

S
< S 0 3 14 17
I 18 20 16 54

Output

Predictions || Probabilities
Select Correct Select Misclassified Clear Selection

You may try to change the

dataset now to the one that oE

includes the full I t of . . . .
includes the full compiement o Out of 54 cells, logistic regression mis-predicted the class for seven

enes. What do you notice?
9 y cells.
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Logistic Regression is only one of
the many learners in Orange.
Another very popular one is
Random Forest. Try to include it

in our workflow!

Make sure that Normalize sends
a preprocessor to Logistic
Regression. Orange will ask what
signals these two widgets should
exchange upon connecting
them. You can always change the
type of connection by double-

clicking on it.
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Lesson 18: Cross-Validation

The results of the classification depend on the training set and the
accuracy of the test set, of course, depends on the composition of
the test data. For speed, change the dataset to the cycle cell data
with a subset of genes. Then, open the Data Sampler and the
Confusion Matrix widget and press Sample button in the Data
Sampler. See how the classification results change with every fresh

instance of the data sampling?

Classification results depend on sampling. When reporting how
good is our data and modeling approach, we should sample many
times and report on average accuracy. There is a Tést & Score widget
that does this for us and a particular sampling technique called
cross-validation that became a standard within machine learning.
In cross-validation, the data is split to folds and in each model-and-
testing iteration, each fold is used for a test dataset exactly once.
The cross-validation workflow is:

( : ) 0,
Uy Evaluation

- Results v
v N
Single Cell Datasets N A L
i
o
qr? Test & Score Confusion Matrix
-J

@ Preprocessor /

Normalize Logistic Regression

It is the Test & Score widget that does data sampling, model

construction, and testing. Hence, Tést & Score needs a method that

is used for modeling and this is provided by Logistic Regression as a

Learner. Notice also that we should execute normalization only on
the training data, as considering the test data at
that stage would be like seeing the future and
hence cheating. Normalization is hence a part
of the learning and a component that is

@ Data |:| D Data /-
Preprocessor [[Sfmmmmef=T] Preprocessor executed prior to logistic regression. In Orange,

Normalize

Clear All

this is solved by providing normalization as a
Logistic Regression L .
preprocessor that logistic regression — or any
Cancel oK other modeling technique — includes in the

model development procedure.
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Test & Score evaluates the
predictive performance by
counting how many of the test
labels our classifier got correct.
In a multi-class setting, this is
done on a one-versus-all basis.

Each of the learning algorithms
has parameters. Double-click on
Logistic Regression or Random
Forest (if you have used this

learner) to change them.

Single-Cell Data Mining April 2019

And the results? Open the Tést & Score widget. It reports on several

classification accuracy statistics. The column CA stands for
classification accuracy: our predictions were right about 90% of
the time. Another often used score is the area under the ROC
curve. AUC considers class probabilities, is a discriminative
measure and is more reliable than classification accuracy as the
score does not depend on class distribution in the dataset. Our
models, on average, scored very well:

00 Test & Score
Sampling Evaluation Results
© Cross validation Method v AUC CA F1 Precision Recall
Number of folds: 10 E Logistic Regression 0.983 0.896 0.882 0.903 0.862
Stratified

_ross validation by feature

Random sampling
Repeat trainftest: 10 u

Training set size: 66 % u
Stratified
Leave one out

Test on train data
Test on test data

Target Class

(Average over classes) u

2l E

For a final test, remove the normalization. How do accuracy results

depend on this component of data preprocessing?

0,
@ Uq Evaluation

- Results v x
Single Cell Datasets

AL
ki
< . >
g Test & Score Confusion Matrix
-J

Logistic Regression
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Lesson 19: Data Set Alignment &
Cross-Dataset Classification

In the previous lecture we classified cells from the same batch. In
other words, we use the data from the same experiment to train
the classifier and to test it. One of the main challenges in the single
cell area is to use one data set to build the classifier, and then to
classify the cells from another experiment. The goal would be that
anyone can use expression profiling of the cells, and then some
previously developed classifier to find which types of the cells she
is dealing with.

There are many problems related to cross-data set classification,
but the principal one is that the differences between two
experiments are often larger than the differences between the cell
types within each of experiments. We need to align the data sets to
remove cross-experiment differences.

We will consider two different data sets that each include mouse
embryonic stem cells that are stage-labeled. The idea is to train
stage model in one data set, and test the stage prediction on the
other data set. The workflow for this last lesson is the most
complex so far:

® v -

Single Cell Datasets Filter (genes) EA 5 @ t-SNE
(mESC Fluidigm) 3 T¢ {@}
Align Datasets E o
Concatenate Edit Domain  Single Cell » A
@ ] [ Preprocess
Select Rows Test & Score (aligned)
Single Cell Datasets Filter (genes)
(mESC QuartzSeq)
oo 22
SVM
= i
Select Rows Test & Score (original)
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We consider two mESC data sets, one obtained by Fluidigm, the

other by QuartzSeq. The first data is the one we got familiar with

already, while the QuartzSeq data set includes 35 cells, again

classified into one of the G1, G2M, or S stages.

The workflow, in short, first reads both data sets. Then we filter

Fluidigm data (genes, detection count in between 10 and 182 cells)

and QuartzSeq data (genes, detection count in between 3 and 30
cells). We concatenate both data sets and include only about 7300

intersecting genes.

The preprocessing uses the following standard pipeline:

Single Cell Preprocess

Preprocessors

o

Normalize Samples

/~ Logarithmic Scale

[ Binarize Expression
. Normalize Samples
/A Standardize Genes

%l Select Most Variable Genes

© Counts per million
O Median

Ocellcroups: (@ sowced B
(%)
Number of genes:

© Dispersion
(O Variance
® (O Mean

Select Most Variable Genes

(O Compute statistics for gene groups.

0 Logarithmic Scale
Logarithm Base: [ e (Natural Logarithm)
0 Standardize Genes
Output
Clipping
( Send Automatically | ) e ek
?2 B

The t-SNE visualization after all this steps shows that the two data

sets are quite different to each other.

t-SNE

Perplexity: 30|
Preserve global structure

O—n
PCA components: = )=————— 20

Normalize data

Exaggeration:

(O Label only selection and subset

<

<>

Size:

<>

<

_O_
o——

Opacity:
Jittering

Symbol size: =

° . o@o °
& °%° [S) ©
0% ®o ) 8“06 L)
2 OOQO)O 5 ® g
[6) (@ (]
| & Og;.g%oooooo@ © o 8o
& )
o@ ) 8o oOO% 659 o® 80
® 090

Bam | S 00, % 0 %20
[ IelE
( Send ‘

2BR
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We need to align the two data sets. We will use alignment by

canonical correlation analysis, as originally implemented in Seurat

R library:
[ oK J Align Datasets
Data source indicator !
[ Source ID ] B mjsc Fluidigm
— mESC QuartzSeq
Canonical correlation analysis 0.8
‘ Num. of components ]
5
Shared genes E; 0.6
Num. of genes [30 | g
Scoring: [ Pearson correlation .g 0.4
o
Post-processing © \/\ 0.246
Quantile normalization 0.2 ‘/¥N7‘2/,\//—\
Dynamic time warping Hx\
@ Apply automatically %72 7 10 13 16 19 22 25 28 31 3
‘ Apply ) Al Correlation components
?2 BB
eoce 1-SNE
° The t-SNE after alignment shows the mixing of cells from the two
&)
e} ? . . .. .
* °o experiments. Now, the only question is if the alignment has helped
° 0000 o . . . . .
®, @O oo © O@ ° us in getting a better classification accuracy. We need to split the
O °®o . . .1 - .
0® oooép oo® o2 %) ; data again, using Fluidigm for training and QuartzSeq for testing.
® %9 @@D% ) We do this through selecting only Fluidigm cells in Select Rows
o_ 0 (&)
° 0% @ ° e . . . .
OO@ 2o . %OO (@@ widget, and then feeding the selection and all other data into Test
° g0 @ Po °
o o (¢] . .
o @0 °% (g 8° o & Score. Double click on the link between Select Rows and Test &
(¢] . . .
©%°%0 o9 Scores to set the communication between these two widgets

accordingly.

[ Jeje) Edit Links

Data
Matching Data

E/E‘ Test Data o
Unmatched Data
[ JOX ) Select Rows > 3 p— A

X
o2 Data
Conditions \:‘ x Preprocessor
Source ID { is [ mESC Fluidigm Select Rows Test & Score (aligned)
o]

Add Condition [ Add All Variables ][ Remove All ]

Data Purging

In: ~217 rows, 22 variables
Out: ~182 rows, 22 variables

(0 Remove unused features
(3 Remove unused classes

Send automatically | Send |

=)
[
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The AUC of predicting QuartzSeq cells using the SVM model

developed on the Fluidigm data is around 0.8:

Test & Score (aligned)

Evaluation Results

(O Cross validation
Number of folds:
Stratified

(O Cross validation by feature

Source ID 3

(O Random sampling

Repeat train/test: m <
Training set size: <

Stratified

(O Leave one out
(O Test on train data

© Test on test data

Target Class

{ [ (Average over classes)

Recall

0.686

AUC | CA | F1 | Precision |

0.802 0.686 0.659 0.654

Method v
SVM

?2 B

This is actually quite high, considering how different are these two
data sets. We get a much lower accuracy on the non-aligned data,

with AUC around o.7.
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For the End

Our single-cell Orange Data Mining course ends here. We covered
quite a lot of topics and hope we have taught you some crucial
algorithms that should be on the stack of every single-cell data
scientists. The course, though, was only an introduction. There are
many of more advanced topics that we left out, and these include
imputation, removal of batch effects, other data visualization tools,
and cross-data cell classification. Our goal was also to expose you
to various aspects of data science, and to show you how to enjoy it

through interactive visualizations and construction of workflows.
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