In the Paint Data widget, remove
the Class-2 label from the list. If
you have accidentally left it while
painting, don’t despair. The class
variable will appear in the Select
Columns widget, but you can
“remove” it by dragging it into
the Available Variables list.

Introduction to Data Mining (GS-GE-402) September 2018

Lesson 17: Linear Regression

For a start, let us construct a very simple data set. It will contain a
just one continuous input feature (let’s call it x) and a continuous
class (let’s call it y). We will use Paint Data, and then reassign one
of the features to be a class by using Select Column and moving
the feature y from the list of “Features” to a field with a target
variable. It is always good to check the results, so we are including
Data Table and Scatter Plot in the workflow at this stage. We will
be modest this time and only paint 10 points and will use Put
instead of the Brush tool.

O

Y) 7 Paint Data
i{i Data Table
Names -8 b
Variable X x T X o
. Paint Data Select Columns %
Variable Y 'y o
Class labels
Scater Plot
08
[JOX) Select Columns
+
Available Variables Features
+ Filter G O«
061 + +
<
* Down
>
+ +
+ Target Variable
Tools 041 + Up [NBY
® |+ | = 5
* D
Brush Put Select own
D m Meta Attributes
Jitter Magnet Zoom 02r Up
Radius 2
Intensity . Down
— ol
“ L L Report Reset Send Automatically
o 0.2 0.4 0.6 0.8 1

Save Graph

We would like to build a model that predicts the value of class y
from the feature x. Say that we would like our model to be linear,

to mathematically express it as h(x)=0o+01x. Oh, this is the
equation of a line. So we would like to draw a line through our data
points. The 6 is then an intercept, and 6 is a slope. But there are

many different lines we could draw. Which one is the best one?
Which one is the one that fits our data the most?

35

Do not worry about the strange

name of the widget Polynomial

Regression, we will get there in a

moment.

w

Paint Data

(¥

Select Columns

Introduction to Data Mining (GS-GE-402) September 2018

The question above requires us to define what a good fit is. Say,
this could be the error the fitted model (the line) makes when it
predicts the value of y for a given data point (value of x). The
prediction is h(x), so the error is h(x) - y. We should treat the
negative and positive errors equally, plus, let us agree, we would
prefer punishing larger errors more severely than smaller ones.
Therefore, it is perfectly ok if we square the errors for each data
point and then sum them up. We got our objective function! Turns
out that there is only one line that minimizes this function. The
procedure that finds it is called linear regression. For cases where
we have only one input feature, Orange has a special widget in the

educational add-on called Polynomial Regression.

Polynomial
Regression

Learner/Predictor Name

#< Univariate Regression

0.7
Univariate Regression

Variables
06

Input = (@ x | T}

Polynomial expansion: 1 S
05

Target| @y | T}

03

02}

0.1

0.1 02 03 04 05
Al x

0.6 0.7 0.8 09

Looks ok. Except that these data points do not appear exactly on
the line. We could say that the linear model is perhaps too simple
for our data sets. Here is a trick: besides column x, the widget
Univariate Regression can add columns x2, x3... x" to our data set.
The number 7 is a degree of polynomial expansion the widget
performs. Try setting this number to higher values, say to 2, and
then 3, and then, say, to 9. Witho the degree of 3, we are then
fitting the data to a linear function h(x) = 6o+ 01x + 61x2 + 01x3.

36

Introduction to Data Mining (GS-GE-402) September 2018

The trick we have just performed (adding the higher order features
to the data table and then performing linear regression) is called
Polynomial Regression. Hence the name of the widget. We get
something reasonable with polynomials of degree 2 or 3, but then
the results get really wild. With higher degree polynomials, we
totally overfit our data.

o @ #< Univariate Regression

Learner/Predictor Name

Univariate Regression

Variables

Input | [@ x [T
Polynomial expansion: | 2 z

- >
Target @y B

It is quite surprising to see that
linear regression model can
result in fitting non-linear
(univariate) functions. That is,
functions with curves, such as
those on the figures. How is this
possible? Notice though that the
model is actually a hyperplane (a
flat surface) in the space of many
features (columns) that are
powers of x. So for the degree 2,
h(x)=00+01x+01x2is a (flat)
hyperplane. The visualization
gets curvy only once we plot h(x)

as a function of x.

0.7

08

05

04}

0.3

02

0.1

©

o @ #< Univariate Regression

Learner/Predictor Name 07

Univariate Regression

06
Variables

Input [@ x u 0.5
Polynomial expansion: | 8 -

h > 04
Target @y &

03

02

0.1

Overfitting is related to the complexity of the model. In
polynomial regression, the models are defined through parameters
0. The more parameters, the more complex is the model.
Obviously, the simplest model has just one parameter (an
intercept), ordinary linear regression has two (an intercept and a
slope), and polynomial regression models have as many parameters
as is the degree of the polynomial. It is easier to overfit with a
more complex model, as this can adjust to the data better. But is
the overfitted model really discovering the true data patterns?
Which of the two models depicted in the figures above would you

trust more?

37

Introduction to Data Mining (GS-GE-402) September 2018

Lesson 18: Regularization

There has to be some cure for the overfitting. Something that
helps us control it. To find it, let’s check what the values of the

parameters 6 under different degrees of polynomials actually are

I []

Paint Data Select Columns Polynomial Data Table
Regression

[JON]] Data Table

Info

With smaller degree polynomials values of @ stay small, but then as

the degree goes up, the numbers get really large.

000] Data Table

Info

4 instances (no missing values) coof

1 feature (no missing values) 1.0.019
No target variable. 2 1.635
1 meta attribute (no missing 3 -0.500
values) 4 0672

Restore Original Order

Variables

Show variable labels (if present)
Visualize continuous values
Color by instance classes
Set colors

Selection

Select full rows

Auto send is on

Which inference of linear model
would overfit more, the one with
high A or the one with low A?
What should the value of A be to
cancel regularization? What if
the value of A is really high, say
1000?

name 5 et coef name
10 instances (no missing values)

U 1 feature (no missing values) 119432 1
u No target variable. -688.141 X
x"2 1 meta attribute (no missing 9657.331 xA2
X3 values) -66492.077 | xA3

265050.559 x4
-646026.515 x5
977748.471 X6
-895558.445 X7
454363.339 x"8
-97906.132 x"9

Restore Original Order

Variables

W e N s W N

Show variable labels (if present)
Visualize continuous values
Color by instance classes
Set colors

=)

Selection

Select full rows

Auto send is on

More complex models can fit the training data better. The fitted
curve can wiggle sharply. The derivatives of such functions are
high, and so need to be the coefficients . If only we could force
the linear regression to infer models with a small value of
coefhicients. Oh, but we can. Remember, we have started with the
optimization function the linear regression minimizes, the sum of
squared errors. We could simply add to this a sum of all 6 squared.
And ask the linear regression to minimize both terms. Perhaps we

should weigh the part with 6 squared, say, we some coefficient A,

just to control the level of regularization.

38

Internally, if no learner is present
on its input, the Polynomial
Regression widget would use
just its ordinary, non-regularized

linear regression.

[# Linear Regr...

Learner/Predictor Name

Linear Regression

Regularization

No regularization
© Ridge regression
Lasso regression

Regularization strength

Alpha: 0.1

Apply on every change
Apply

Introduction to Data Mining (GS-GE-402) September 2018

Here we go: we just reinvented regularization, a procedure that
helps machine learning models not to overfit the training data. To
observe the effects of the regularization, we can give Polynomial

Regression our own learner, which supports these kind of settings.

E &

Paint Data Select Columns ? ': D
oy Polynomial Data Table
;}f-“ Regression

Linear Regression

The Linear Regression widget provides two types of regularization.
Ridge regression is the one we have talked about and minimizes

the sum of squared coefficients 6. Lasso regression minimizes the

sum of absolute value of coefficients. Although the difference may
seem negligible, the consequences are that lasso regression may

result in a large proportion of coefficients 6 being zero, in this way

performing feature subset selection.

Now for the test. Increase the degree of polynomial to the max.
Use Ridge Regression. Does the inferred model overfit the data?

How does degree of overfitting depend on regularization strength?

39

Paint about 20 to 30 data
instances. Use attribute y as
target variable in Select
Columns. Split the data 50:50 in
Data Sampler. Cycle between
test on train or test data in Test &
Score. Use ridge regression to
build linear regression model.

Introduction to Data Mining (GS-GE-402) September 2018

Lesson 19: Regularization and
Accuracy on Test Set

Overfitting hurts. Overfit models fit the training data well, but can
perform miserably on new data. Let us observe this effect in
regression. We will use hand-painted data set, split it into the
training (50%) and test (50%) data set, polynomially expand the
training data set to enable overfitting, build a model on it, and test
the model on both the (seen) training data and the (unseen) held-

out data:
_, Dpata o
ample roarDat®
Do _
G
ﬁ Data @ Data % > e _ Test & Score
z = WUy 2
86”7/)/@ g
Paint Data Select Columns Data Sampler > o, =
e y
Loamet)
> Polynomial
Regression

Linear Regression

Now we can vary the regularization strength in Linear Regression
and observe the accuracy in Test & Score. For accuracy scoring, we
will use RMSE, root mean squared error, which is computed by
observing the error for each data point, squaring it, averaging this

across all the data instances, and taking a square root.

The core of this lesson is to compare the error on the training and
test set while varying the level of regularization. Remember,
regularization controls overfitting - the more we regularize, the less
tightly we fit the model to the training data. So for the training set,
we expect the error to drop with less regularization and more
overfitting, and to increase with more regularization and less
fitting. No surprises expected there. But how does this play out on
the test set? Which sides minimizes the test-set error? Or is the
optimal level of regularization somewhere in between? How do we

estimate this level of regularization from the training data alone?

Orange is currently not equipped with parameter fitting and we
need to find the optimal level of regularization manually: At this
stage, it suffices to say that parameters must be found on the

training data set without touching the test data.

40

Download the methylation data
set from http://file.biolab.si/files/

methylation.tab. Predictions of
age from methylation profile
were investigated by Horvath
(2013) Genome Biology

Introduction to Data Mining (GS-GE-402) September 2018

Lesson 20: Prediction of Tissue
Age from Level of Methylation

Enough painting. Now for the real data. We will use a data set that
includes human tissues from subjects at different age. The tissues
were profiled by measurements of DNA methylation, a mechanism
for cells to regulate the gene expression. Methylation of DNA is
scarce when we are young, and gets more abundant as we age. We

have prepared a data set where the degree of methylation was

14:R115.
expressed per each gene. Let us test if we can predict the age from
the methylation profile - and if we can do this better than by just
predicting the average age of subjects in the training set.
[) [] i Test & Score @
Sampling Evaluation Results
D Data Table
© Cross validation Method MSE RMSE MAE R2
Number of folds: 10 |2 Mean Learner 100.475 10.024 8.648 -0.016
Leave one out Linear Regression 35.724 5977 4.745 0.639 File .
Random sampling ol A
Repeat train/test 10 |2 o5
Relative training set size: Test & Score
Linear Regression
: ; . 5%
Test on train data °
Test on test data O]
Constant

Using other learners, like random
forests, takes a while on this data
set. But you may try to sample
the features, obtain a smaller
data set, and try various

regression learners.

This workflow looks familiar and is similar to those for
classification problems. The Test & Score widget reports on
statistics we have not seen before. MAE, for one, is the mean
average error. Just like for classification, we have used cross-
validation, so MAE was computed only on the test data instances
and averaged across 10 runs of cross validation. The results
indicate that our modeling technique misses the age by about §
years, which is a much better result than predicting by the mean

age in the training set.

41

http://file.biolab.si/files/methylation.tab
http://file.biolab.si/files/methylation.tab
http://file.biolab.si/files/methylation.tab
http://file.biolab.si/files/methylation.tab
http://file.biolab.si/files/methylation.tab
http://file.biolab.si/files/methylation.tab

This workflow visualizes the
predictions that were performed
on the training data. How would
you change the widget to use a
separate test set? Hint: The
Sample widget can help.

Introduction to Data Mining (GS-GE-402) September 2018

Lesson 21: Evaluating Regression

The last lessons quickly introduced scoring for regression, and
important measures such as RMSE and MAE. In classification, a
nice addition to find misclassified data instances was the confusion
matrix. But the confusion matrix could only be applied to discrete
classes. Before Orange gets some similar for regression, one way to
find misclassified data instances is through scatter plot!

Linear Regression D
74 I

Data Table
)
Paint Data Select Columns
D Predictions ol
.'..
Data Table (1) Scatter Plot

We can play around with this workflow by painting the data such
that the regression would perform well on blue data point and fail
on the red outliers. In the scatter plot we can check if the

difference between the predicted and true class was indeed what
we have expected.

[JON) FZ Paint Data
Names
Variable X x

Variable Y 'y +

Class labels
B Class-1

. +
08l

08

+
+| - + *
Tools 041 +

@ + * s

Brush Put Select

0 B e, 7

Jitter Magnet Zoom 021

+
Radius *
Intensity +

Send on change

0 0.2 0.4 0.6 0.8 1
Save Graph

42

Variable Definitions
New “ err

Remove

We could, in principle, also mine
the errors to see if we can
identify data instances for which
this was high. But then, if this is
so, we could have improved
predictions at such regions. Like,
construct predictors that predict
the error. This is weird. Could we
then also construct a predictor,
that predicts the error of the
predictor that predicts the error?
Strangely enough, such ideas
have recently led to something
called Gradient Boosted Trees,
which are nowadays among the
best regressors (and are coming

to Orange soon).

Introduction to Data Mining (GS-GE-402) September 2018

A similar workflow would work for any data set. Take, for instance,

the housing data set (from Orange distribution). Say, just like
above, we would like to plot the relation between true and

predicted continuous class, but would like to add information on
the absolute error the predictor makes. Where is the error coming

from? We need a new column. The Feature Constructor widget

(albeit being a bit geekish)

Linear Regression

N

File

abs(y-Linear_Regression)

Select Feature k4 Select Function
e0e
Axis Data
Axisx: | [@MEDV B
Axis y: [® Linear Regression E
Jittering: r10%
Jitter continuous values
Points
Color: (Same color) B
Label: | (No labels) B
Shape: = (Same shape) E %
Size: @ error E ?
o
Symbol size: 20]
<
Opacity: 122 =]
Set Colors

Plot Properties
Show legend
Show gridlines
Show all data on mouse hover
Show class density

Zoom/Select

comes to the rescue.

- A

Predictions Feature Constructor Scatter Plot

In the Scatter Plot widget, we can

now select the data where the

©

predictor erred substantially and

explore the results further.

& Scatter Plot

kO Q
Auto send selection is on
Save Graph

MEDV

43

For this lesson, load the data

from imports-85.tab using the

File widget and Browse
documentation data sets.

Introduction to Data Mining (GS-GE-402)

September 2018

Lesson 22: Feature Scoring and

Selection

Linear regression infers a model that estimate the class, a real-

valued feature, as a sum of products of input features and their
weights. Consider the data on prices of imported cars in 1985.

Data Table (1)

[XON]
height curb-weight gine-typ

1 48.800 2548.000 | dohc
2 48.800) 2548.000 dohc
3 52.400 2823.000 | ohcv
4 54.300 2337.000 ohc
5 54300 2824.000 ohc
6 53.100 2507.000 ohc
7 55700 2844.000 ohc
8 55700 2954.000 ohc
9 55900 3086.000 ohc
10 52000 3053.000 ohc
n 54300 2395.000 ohc
12 54300 2395.000 ohc
13 54.300 2710000 ohc
14 54.300 2765.000 ohc
15 55700 3055.000 ohc
16 55700 3230000 ohc
7 53700 3380.000 ohc
18 56.300 3505.000 ohc
(] Continuize

Categorical Features

© Target or first value as base
Most frequent value as base
One attribute per value
Ignore multinomial attributes
Remove categorical attributes
Treat as ordinal
Divide by number of values

Numeric Features

Leave them as they are
Normalize by span

© Normalize by standard deviation

Categorical Outcomes

© Leaveitasitis
Treat as ordinal
Divide by number of values
One class per value

Value Range

From -1to0 1
© From0to1

Report

Apply Automatically

four
four
six
four
five
five
five
five
five
five
four
four
six
six
six
six

six

gine-si fuel-syst bore stroke
130.000 | mpfi 3.470 2.680
130.000 | mpfi 3.470 2.680
152.000 | mpfi 2.680 3.470
109.000 | mpfi 3.190 3.400
136.000 | mpfi 3.190 3.400
136.000 | mpfi 3.190 3.400
136.000 | mpfi 3.190 3.400
136.000 | mpfi 3.190 3.400
131.000 | mpfi 3.130 3.400
131.000 = mpfi 3.130 3.400
108.000 | mpfi 3.500 2.800
108.000 | mpfi 3.500 2.800
164.000 | mpfi 3.310 3.190
164.000 | mpfi 3.310 3.190
164.000 | mpfi 3.310 3.190
209.000 | mpfi 3.620 3.390
209.000 | mpfi 3.620 3.390
209.000 | mpfi 3.620 3.390

using Continuize widget.

Before we continue, you
should check what
Continuize actually does

File

and how it converts the

nominal features into real-

valued features. The table

below should provide

sufficient illustration.

(] o Data Table

symboling=3 1ormalized-losses make=audi

1 1.Uuv T v.uuu
2 1.000 ? 0.000
3 0.000 ? 0.000
4 0.000 1.189 1.000
5 0.000 1.189 1.000
6 0.000 ? 1.000
7 0.000 1.019 1.000
8 0.000 ? 1.000
9 0.000 1.019 1.000
10 0.000 ? 1.000
1 0.000 1.981 0.000
12 0.000 1.981 0.000
13 0.000 1.868 0.000
14 0.000 1.868 0.000
15 0.000 ? 0.000
16 0.000 ? 0.000
17 0.000 ? 0.000
18 0.000 ? 0.000
19 0.000 -0.028 0.000
20 0.000 -0.679 0.000

Inspecting this data set in a Data

Table, it shows that some

teatures, like fuel-system, engine-

type and many others, are

discrete. Linear regression only

works with numbers. In Orange,

linear regression will

automatically convert all discrete

values to numbers, most often

using several features to represent

a single discrete features. We also

do this conversion manually by

ered

Continuize

™

Data Table (1)

make=bmw
v.uuv

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.000
0.000

make=chevrolet
v.uvu

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000
1.000

i

Data Table

make=dodge
v.uuuv

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

[]

Linear Regression

Name

Linear Regression

Regularization

No regularization

Ridge regression (L2)

@ Lasso regression (L1)

Elastic net regression

Regularization strength:

Alpha: 85

Elastic net mixing:
L1 [} 1
0.82:0.18

Apply Automatically

12

Introduction to Data Mining (GS-GE-402) September 2018

Now to the core of this lesson. Our workflow reads the data,
coninuizes it such that we also normalize all the features to bring
them the to equal scale, then we load the data into Linear

Regression widget and check out the feature coeflicients in the
Data Table.

Coefficients =
Data o Data

D Data =% i @

File Continuize Linear Regression Data Table

In Linear Regression, we will use L1 regularization. Compared
to L2 regularization, which aims to minimize the sum of
squared weights, L1 regularization is more rough and minimizes
the sum of absolute values of the weights. The result of this
“roughness” is that many of the feature will get zero weights.

But this may be also exactly
® o Data Table

what we want. We want to

name coef v
14781.0739...
3736.1386877
3451.7025316
3282.1956614
3132.88673...
1348.37923...
1136.7353605
756.6294283
616.5482117
586.4145233
445.2958132
197.4172805

select only the most

1 intercept

9 make=bmw

56 engine-size

22 make=porsche

16 make=mercedes-benz
67 horsepower

41 width

43 curb-weight

68 peak-rpm

37 drive-wheels=rwd

important features, and want
to see how the model that
uses only a smaller subset of
features actually behaves.
Also, this smaller set of
features is ranked. Engine size

66 compression-ratio
46 engine-type=ohc

42 height 119.0028342 is a huge factor in pricing of
70 highway-mpg -0.0000000 .

60 city-mpg -0.0000000 our cars, and so is the make,
64 bore -0.0000000

63 fuelsystomespf -5.0000000 where Porsche, Mercedes and
62 fuel-system=spdi -0.0000000

61 fuel-system=mpfi 0.0000000 BMW cost more than Other
AN fiial-evetam=mfi -N NNNNNNN

cars (ok, no news here).

We should notice that the
number of features with non-zero weights varies with
regularization strength. Stronger regularization would result in

fewer features with non-zero weights.

45

