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Lesson 11: A Few More Classifiers
We have ended the previous lesson with cross-validation and 
classification trees. There are many other, much more accurate 
classifiers. A particularly interesting one is Random Forest, which 
averages across predictions of hundreds of classification trees. It 
uses two tricks to construct different classification trees. First, it 
infers each tree from a sample of the training data set (with 
replacement). Second, instead of choosing the most informative 
feature for each split, it randomly selects from a subset of most 
informative features. In this way, it randomizes the tree inference 
process. Think of each tree shedding light on the data from a 
different perspective. Just like in the wisdom of the crowd, an 
ensemble of trees (called a forest) usually performs better than a 
single tree.

Let us see if this is really so. We give two learners to the Test 
Learners widget and check if cross-validated classification accuracy 
is indeed higher for random forest. Choose different classification 
data sets for this comparison, starting with those we already know 
(hearth disease, iris, brown selected).
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It may be interesting to compare where different classification 
methods make mistakes. We can use Confusion Matrix for this 
purpose, and then pass the signal from this widget to the Scatter 
Plot.

There are other classifiers we can try. We will briefly mention a few 
more, but instead of diving into what they do (we could spend a 
semester on this!), we’ll pass on to other important topics in data 
mining. At this point, just add them to the workflow above and see 
how they perform.

It would be nice if we could, at least on the intuitive level, 
understand the differences between all these methods and their 
variants (every method has some parameters). Remember, the 
classification tree finds hyperplanes orthogonal to the axis; those 
hyperplanes split the data space to regions with different class 
probabilities. The tree’s decision boundaries are flat. Nearest 
neighbors classifies the data instance according to the few 
neighboring data instances in the training set. Decision boundaries 
with this approach could be very complex. Logistic regression 
infers just one hyperplane (decision boundary) in an arbitrary 
direction. This is similar to support vector machines with linear 
kernel, but then again, the kernels with SVM can be changed, 
resulting in more complex decision boundaries.
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What kind of object is sent from 
the Test & Score widget to the 
Confusion Matrix widget? So far, 
we have used widgets that send 
data, or even learners. But what 
could the Test & Score widget 
communicate to other widgets?
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Ok, we have to admit: the above paragraph reads almost like  
gibberish. We would need a workflow where we could actually see 
the decision boundaries. And perhaps invent the data sets to test 
the classifiers. Best in 2D. Maybe, for a start, we could just paint 
the data. Time to stop writing this long passage of text, end the 
suspense, and construct a workflow that does this all.

Be creative when painting the data! Also, instead of SVM, use 
different classifiers. Also, try changing the parameters of the 
classifiers. Like, limit the depth of the decision tree to 2, or 3, 4. Or 
switch from SVM with linear kernel to the radial basis function. 
Appropriately set up the scatter plot to observe the changes.
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Lesson 12: A Sneaky Way to 
Cheat
Consider a typical gene expression data sets where we have 
samples in rows and genes expressions in columns. These data sets 
are usually fat: there are many more genes than samples. Fat data 
sets are almost typical for systems biology. When samples are 
labeled with phenotype and our task is phenotype classification, 
many features (genes) will be irrelevant and most often only a few 
will be highly correlated with class. So why not simply first select a 
set of most informative features, and then do the whole analysis? 
At least cross-validation will then work much faster, as the model 
inference algorithms will deal with much smaller data tables. Cool. 
What a nice trick! Let’s try it out in the following workflow.
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The workflow above uses the data preprocessing widget, which we 
have configured to select 5 most informative features. 

Observe the classification accuracy obtained on the original data 
set, and on the data set with five best selected features.What is 
happening? Why? 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Gene expression data set we will 
use was borrowed from Gene 
Expression Omnibus. There is a 
special widget in Orange 
bioinformatics add on that we 
could use to fetch this and 
similar data sets. Instead, we will 
here rely on GEO data set that is 
preloaded in Orange: geo-
gds360. Use File and then 
“Browse documentation data 
sets”.
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Lesson 13: Cheating Works Even 
on Randomized Data
We can push the example from our previous lesson to the extreme. 
We will randomize the classification data. That is, we will take the 
column with the class values and randomly permute it. We will use 
the Randomize widget to do this.

Later, we will do classification on this data set. We expect really 
low classification accuracy on randomized data set. Then, we will 
select five features that are most associated with the class. Even 
though we have randomly permuted the classes, there have to be 
some features that are weakly correlated with the class. Simply 
because we have tens of thousands of features, and we have only a 
few samples. There are enough features that some of them 
correlate with class simply by chance. Finally, we will score a 
random forest on a randomized data set with selected features.

Compare the scores reported by cross-validation on different data 
sets in this pipeline. Why is the accuracy in the final one rather 
high? Would adding more “most informative features” improve or 
degrade the cross-validated performance on a randomized data set?
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Instead of selecting five most 
informative features, you can 
reduce this number even further. 
Say, to two most informative 
features. What happens? Why 
does accuracy raise after this 
change?
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Lesson 14: How to Correctly 
Perform Test and Score
To put it simply: never, in any way, transform the data prior to 
cross-validation. Any transformation should happen within cross-
validation loop, first on the training set, and then, if required, on a 
test set. In a relaxed form: it’s ok to transform the data, but the 
transformation should be done independently on the train and the 
test set and the transformation on the test set should in no way use 
the information about the class value. Data imputation could be an 
example of such operation, but again it should be carried out 
separately for the train and test set and should not consider classes.

But how do we then correctly apply preprocessing in Orange? The 
idea of reducing the number of features prior to inferring a 
predictive model may be still appealing, now that we know we can 
use it on training data sets (leaving the test set alone). Following 
are two workflows that do this correctly.
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In this first workflow, we gave the Test & Score widget a 
preprocessor (feature selection was used in this example). The Test 
& Score widget uses it correctly only on the training sets. This type 
of workflow is preferred if we would like to test the effect of 
preprocessing on a number of different learning algorithms.
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The writing on the right looks 
straightforward. But actually one 
needs to be extremely careful 
not to succumb to overfitting 
when reporting results of cross-
validation tests. The literature on 
systems biology is polluted with 
reporting on overly optimistic 
results, and high impact factors 
provide no guarantee that 
studies were carried out 
correctly (in fact, due to a lack of 
reviewers from the field of 
machine learning, mistakes likely 
stay overlooked). 

Simon et al. (2003) provides a 
great read on this topic. He 
found that many of the early 
papers in gene expression 
analysis reported high accuracy 
simply due to overfitting. 
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Alternatively, we can include a preprocessor in a learning method. 
The preprocessor is now called on the training data set just before 
this learner performs inference of the predictive model.
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Can you extend this workflow to such an extent that you can test 
both a learner with preprocessing by feature subset selection and 
the same learner without this preprocessing? How does the 
number of selected features affect the cross-validated accuracies? 
Does the success of this particular combination of machine 
learning technique depend on the input data set? Does it work 
better for some machine learning algorithms? Try its performance 
on k-nearest neighbors learner (warning: use small data sets, this 
classifier could be very slow).

Somehow, in a shy way, we have also introduced a technique for 
feature selection, and pointed to its possible utility for 
classification problems. Feature subset selection, or FSS in short, 
was and still is, to some extent, an important topic in machine 
learning. Modern classification algorithms, though, perform it 
implicitly, and can deal with a large number of features without the 
help of external procedures for their advanced selection. Random 
forest is one such technique.
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The Preprocess widget does 
not necessary require a data 
set on its input. An alternative 
use of this widget is to output 
a method for data 
preprocessing, which we can 
then pass to either a learning 
method or to a widget for 
cross validation. 

This is not the first time we 
have used a widget that 
instead of a data passes 
forward a computation 
method. All the learners, like 
Random Forest, do so. A 
learner could get data on its 
input and pass a classifier to 
its output, or simple pass an 
instance of itself, that is, pass a 
learning algorithm to 
whichever widget could use it. 
For instance, to the Test & 
Score widget.


