
Introduction to Data Mining (GS-GE-402) September 2018

Lesson 11: A Few More Classifiers
We have ended the previous lesson with cross-validation and
classification trees. There are many other, much more accurate
classifiers. A particularly interesting one is Random Forest, which
averages across predictions of hundreds of classification trees. It
uses two tricks to construct different classification trees. First, it
infers each tree from a sample of the training data set (with
replacement). Second, instead of choosing the most informative
feature for each split, it randomly selects from a subset of most
informative features. In this way, it randomizes the tree inference
process. Think of each tree shedding light on the data from a
different perspective. Just like in the wisdom of the crowd, an
ensemble of trees (called a forest) usually performs better than a
single tree.

Let us see if this is really so. We give two learners to the Test
Learners widget and check if cross-validated classification accuracy
is indeed higher for random forest. Choose different classification
data sets for this comparison, starting with those we already know
(hearth disease, iris, brown selected).

�23

Introduction to Data Mining (GS-GE-402) September 2018

It may be interesting to compare where different classification
methods make mistakes. We can use Confusion Matrix for this
purpose, and then pass the signal from this widget to the Scatter
Plot.

There are other classifiers we can try. We will briefly mention a few
more, but instead of diving into what they do (we could spend a
semester on this!), we’ll pass on to other important topics in data
mining. At this point, just add them to the workflow above and see
how they perform.

It would be nice if we could, at least on the intuitive level,
understand the differences between all these methods and their
variants (every method has some parameters). Remember, the
classification tree finds hyperplanes orthogonal to the axis; those
hyperplanes split the data space to regions with different class
probabilities. The tree’s decision boundaries are flat. Nearest
neighbors classifies the data instance according to the few
neighboring data instances in the training set. Decision boundaries
with this approach could be very complex. Logistic regression
infers just one hyperplane (decision boundary) in an arbitrary
direction. This is similar to support vector machines with linear
kernel, but then again, the kernels with SVM can be changed,
resulting in more complex decision boundaries.

�24

What kind of object is sent from
the Test & Score widget to the
Confusion Matrix widget? So far,
we have used widgets that send
data, or even learners. But what
could the Test & Score widget
communicate to other widgets?

Introduction to Data Mining (GS-GE-402) September 2018

Ok, we have to admit: the above paragraph reads almost like
gibberish. We would need a workflow where we could actually see
the decision boundaries. And perhaps invent the data sets to test
the classifiers. Best in 2D. Maybe, for a start, we could just paint
the data. Time to stop writing this long passage of text, end the
suspense, and construct a workflow that does this all.

Be creative when painting the data! Also, instead of SVM, use
different classifiers. Also, try changing the parameters of the
classifiers. Like, limit the depth of the decision tree to 2, or 3, 4. Or
switch from SVM with linear kernel to the radial basis function.
Appropriately set up the scatter plot to observe the changes.

�25

Introduction to Data Mining (GS-GE-402) September 2018

Lesson 12: A Sneaky Way to
Cheat
Consider a typical gene expression data sets where we have
samples in rows and genes expressions in columns. These data sets
are usually fat: there are many more genes than samples. Fat data
sets are almost typical for systems biology. When samples are
labeled with phenotype and our task is phenotype classification,
many features (genes) will be irrelevant and most often only a few
will be highly correlated with class. So why not simply first select a
set of most informative features, and then do the whole analysis?
At least cross-validation will then work much faster, as the model
inference algorithms will deal with much smaller data tables. Cool.
What a nice trick! Let’s try it out in the following workflow.

�

The workflow above uses the data preprocessing widget, which we
have configured to select 5 most informative features.

Observe the classification accuracy obtained on the original data
set, and on the data set with five best selected features.What is
happening? Why? 

�26

Gene expression data set we will
use was borrowed from Gene
Expression Omnibus. There is a
special widget in Orange
bioinformatics add on that we
could use to fetch this and
similar data sets. Instead, we will
here rely on GEO data set that is
preloaded in Orange: geo-
gds360. Use File and then
“Browse documentation data
sets”.

Introduction to Data Mining (GS-GE-402) September 2018

Lesson 13: Cheating Works Even
on Randomized Data
We can push the example from our previous lesson to the extreme.
We will randomize the classification data. That is, we will take the
column with the class values and randomly permute it. We will use
the Randomize widget to do this.

Later, we will do classification on this data set. We expect really
low classification accuracy on randomized data set. Then, we will
select five features that are most associated with the class. Even
though we have randomly permuted the classes, there have to be
some features that are weakly correlated with the class. Simply
because we have tens of thousands of features, and we have only a
few samples. There are enough features that some of them
correlate with class simply by chance. Finally, we will score a
random forest on a randomized data set with selected features.

Compare the scores reported by cross-validation on different data
sets in this pipeline. Why is the accuracy in the final one rather
high? Would adding more “most informative features” improve or
degrade the cross-validated performance on a randomized data set?

�27

Instead of selecting five most
informative features, you can
reduce this number even further.
Say, to two most informative
features. What happens? Why
does accuracy raise after this
change?

Introduction to Data Mining (GS-GE-402) September 2018

Lesson 14: How to Correctly
Perform Test and Score
To put it simply: never, in any way, transform the data prior to
cross-validation. Any transformation should happen within cross-
validation loop, first on the training set, and then, if required, on a
test set. In a relaxed form: it’s ok to transform the data, but the
transformation should be done independently on the train and the
test set and the transformation on the test set should in no way use
the information about the class value. Data imputation could be an
example of such operation, but again it should be carried out
separately for the train and test set and should not consider classes.

But how do we then correctly apply preprocessing in Orange? The
idea of reducing the number of features prior to inferring a
predictive model may be still appealing, now that we know we can
use it on training data sets (leaving the test set alone). Following
are two workflows that do this correctly.

�

In this first workflow, we gave the Test & Score widget a
preprocessor (feature selection was used in this example). The Test
& Score widget uses it correctly only on the training sets. This type
of workflow is preferred if we would like to test the effect of
preprocessing on a number of different learning algorithms.

�28

The writing on the right looks
straightforward. But actually one
needs to be extremely careful
not to succumb to overfitting
when reporting results of cross-
validation tests. The literature on
systems biology is polluted with
reporting on overly optimistic
results, and high impact factors
provide no guarantee that
studies were carried out
correctly (in fact, due to a lack of
reviewers from the field of
machine learning, mistakes likely
stay overlooked).

Simon et al. (2003) provides a
great read on this topic. He
found that many of the early
papers in gene expression
analysis reported high accuracy
simply due to overfitting.

Introduction to Data Mining (GS-GE-402) September 2018

Alternatively, we can include a preprocessor in a learning method.
The preprocessor is now called on the training data set just before
this learner performs inference of the predictive model.

�

Can you extend this workflow to such an extent that you can test
both a learner with preprocessing by feature subset selection and
the same learner without this preprocessing? How does the
number of selected features affect the cross-validated accuracies?
Does the success of this particular combination of machine
learning technique depend on the input data set? Does it work
better for some machine learning algorithms? Try its performance
on k-nearest neighbors learner (warning: use small data sets, this
classifier could be very slow).

Somehow, in a shy way, we have also introduced a technique for
feature selection, and pointed to its possible utility for
classification problems. Feature subset selection, or FSS in short,
was and still is, to some extent, an important topic in machine
learning. Modern classification algorithms, though, perform it
implicitly, and can deal with a large number of features without the
help of external procedures for their advanced selection. Random
forest is one such technique.

�29

The Preprocess widget does
not necessary require a data
set on its input. An alternative
use of this widget is to output
a method for data
preprocessing, which we can
then pass to either a learning
method or to a widget for
cross validation.

This is not the first time we
have used a widget that
instead of a data passes
forward a computation
method. All the learners, like
Random Forest, do so. A
learner could get data on its
input and pass a classifier to
its output, or simple pass an
instance of itself, that is, pass a
learning algorithm to
whichever widget could use it.
For instance, to the Test &
Score widget.

