
Introduction to Data Mining (GS-GE-402) September 2018

Lesson 5: Classification
In one of the previous lessons, we explored the heart disease data.
We wanted to predict which persons have clogged arteries — but
we did not make any predictions. Let's try it now.

This won't do: the widget Predictions shows the data, but no
makes no predictions. It can't. For this, it needs a model. Like this.

The data is fed into the Tree widget, which uses it to infer a
predictive model. The Predictions widget now gets the data from
the File widget and also a predictive model from the Tree widget.
This is something new: in our past workflows, widgets passed only
data to each other, but here we have a channel that carries a model.

The Predictions widget uses the
model to make predictions about
the data and shows them in the
table.

How correct are these
predictions? Do we have a good
model? How can we tell?

But (and even before answering
these critical questions), what is a
tree? How does it look like? How
does Orange create one? Is this
algorithm something we should
use? So many questions to answer
today! 

�14

Introduction to Data Mining (GS-GE-402) September 2018

Lesson 6: Classification Trees
Classification tree is one of the oldest, but still popular, machine
learning methods. We like it since the method is easy to explain
and gives rise to random forests, one of the most accurate machine
learning techniques (more on this later). So, what kind of model is
a classification tree?

Let us load a data set from http://file.biolab.si/datasets/sailing.tab
that records the conditions under which a friend skipper went
sailing, build a tree and visualize it in the Tree Viewer.

We read the tree from
top to bottom. It looks
like this skipper is a
social person; as soon as
there’s company, the
probability of her sailing
increases. When joined
by a smaller group of
individuals, there is no
sailing if there is rain.
(Thunderstorms? Too
dangerous?) When she
has a smaller company,

but the boat at her disposal is big, there is no sailing either.

�15

Here’s a warning: this sailing
data is small. Therefore, any
relations inferred from the
classification tree on this page
are unreliable. What should the
size of the data set be to acquire
stronger conclusions?

The data set we will use is stored
on a server. Copy the web
address and paste it into URL
entry box in the File widget. An
alternative way to access this
data is to use the Data Sets
widget that is currently available
in the Prototypes add-on.

http://file.biolab.si/datasets/sailing.tab

Introduction to Data Mining (GS-GE-402) September 2018

Trees place the most useful feature at the root. What would be the
most useful feature? It is the feature that splits the data into two
purest possible subsets. These are then split further, again by the
most informative features. This process of breaking up the data
subsets to smaller ones repeats until we reach subsets where all
data belongs to the same class. These subsets are represented by
leaf nodes in strong blue or red. The process of data splitting can
also terminate when it runs out of data instances or out of useful
features (the two leaf nodes in white).

We still have not been very explicit about what we mean by “the
most useful” feature. There are many ways to measure this. We can
compute some such scores in Orange using the Rank widget,
which estimates the quality of data features and ranks them
according to how much information they carry. We can compute
the scores from the whole data set or from data corresponding to
some node of the classification tree in the Tree Viewer.

�16

The Rank widget could be used
on its own. Say, to figure out
which genes are best predictors
of the phenotype in some gene

Classification trees were hugely
popular in the early years of
machine learning, when they
were first independently
proposed by the engineer Ross
Quinlan (C4.5) and a group of
statisticians (CART), including the
father of random forests Leo
Brieman.

In this class, we will not dive into
definitions. If you are interested,
there’s a good explanation of
information gain on
stackoverflow.com.

https://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain
https://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain
https://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain
https://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain
https://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain
https://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain

Introduction to Data Mining (GS-GE-402) September 2018

Lesson 7: Model Inspection
Here’s another interesting combination of widgets: the
classification tree viewer and the scatterplot. This time, consider
the famous Iris data set (comes with Orange). In the Scatter Plot,
find the best visualization of this data set, that is, the one that best
separates the instances from different classes. Then connect the
Tree Viewer to the Scatterplot. Selecting any node of the tree will
output the corresponding data subset, which will be shown in the
scatter plot.

Just for fun, we have included a few other widgets in this workflow.
In a way, the Tree Viewer widget behaves like the Select Rows
widget, except that the rules used to filter the data are inferred
from the data itself and optimized to obtain purer data subsets. 

�17

Wherever possible, visualizations
in Orange are designed to
support selection and passing of
the data that applies to it.
Finding interesting data subsets
and analyzing their
commonalities is a central part of
explorative data analysis, a data
analysis approach favored by the
data visualization guru Edward
Tufte.

Introduction to Data Mining (GS-GE-402) September 2018

Lesson 8: Classification Accuracy
Now that we know what classification trees are, the next question
is what is the quality of their predictions. For beginning, we need
to define what we mean by quality. In classification, the simplest
measure of quality is classification accuracy expressed as the
proportion of data instances for which the classifier correctly
guessed the value of the class. Let’s see if we can estimate, or at
least get a feeling for, classification accuracy with the widgets we
already know.

Let us try this schema with the brown-selected data set. The
Predictions widget outputs a data table augmented with a column
that includes predictions. In the Data Table widget, we can sort
the data by any of these two columns, and manually select data
instances where the values of these two features are different (this
would not work on big data). Roughly, visually estimating the
accuracy of predictions is straightforward in the Distribution
widget, if we set the features in view appropriately.

�18

Measuring of accuracy is such an
important concept that it would
require its widget. But wait a
while, there’s educational value
in reusing the widgets we
already know.

Introduction to Data Mining (GS-GE-402) September 2018

Lesson 9: How to Cheat
At this stage, the classification tree looks very good. There’s only
one data point where it makes a mistake. Can we mess up the data
set so bad that the trees will ultimately fail? Like, remove any
existing correlation between gene expression profiles and class? We
can! There’s the Randomize widget that can shuffle the class
column. Check out the chaos it creates in the Scatter Plot
visualization where there were nice clusters before randomization!

Fine. There can be no classifier that can model this mess, right?
Let us test this. We will build classification tree and check its
performance on the messed-up data set. 

�19

Why is the background in this
scatter plot so green, and only
green? Why have the other
colors disappeared after the
class randomization?

This lesson has a strange title
and it is not obvious why it was
chosen. Maybe you, the reader,
should tell us what does this
lesson have to do with cheating.

Randomize widget shuffles the
column in the data table. It can
shuffle the class column, columns
with data features or columns
with meta information. Shuffling
the class column breaks any
relation between features and
the class, keeping the data
points (genes profiles) intact.

Introduction to Data Mining (GS-GE-402) September 2018

And the result? Here is a screenshot of the Distributions:

Most unusual. Almost no mistakes. How is this possible? On a
class-randomized data set?

To find the answer to this riddle, open the Tree Viewer and check
out the tree. How many nodes does it have? Are there many data
instances in the leaf nodes?

It looks like the tree just memorized every data instance from the
data set. No wonder the predictions were right. The tree makes no
sense, and it is complex because it simply remembered everything.

Ha, if this is so, that is, if a classifier remembers everything from a
data set but without discovering any general patterns, it should
perform miserably on any new data set. Let us check this out. We
will split our data set into two sets, training and testing, train the

classification tree on the training data set and then
estimate its accuracy on the test data set.

 

�20

The signals from the Data
Sampler widget have not been
named in our workflow to save
space. The Data Sampler splits
the data to a sample and out-of-
sample (so called remaining
data). The sample was given to
the Tree widget, while the
remaining data was handed to
the Predictions widget. Set the
Data Sampler so that the size of
these two data sets is about
equal.

At this stage, it may be
worthwhile checking how do the
trees look. Try comparing the
tree inferred from original and
shuffled data!

Introduction to Data Mining (GS-GE-402) September 2018

Let’s check how the Distributions widget looks after testing the
classifier on the test data.

The first two classes are a complete fail. The predictions for
ribosomal genes are a bit better, but still with lots of mistakes. On
the class-randomized training data, our classifier fails miserably.
Finally, this is just as we would expect.

To test the performance (accuracy) of the classification technique,
we have just learned that we need to train the classifiers on the
training set and then test it on a separate test set. With this test,
we can distinguish between those classifiers that just memorize the
training data and those that learn a useful model.

Learning is not only remembering. Rather, it is discovering
patterns that govern the data and apply to new data as well. To
estimate the accuracy of a classifier, we, therefore, need a separate
test set. This assessment should not depend on just one division of
the input data set to training and test set (here’s a place for
cheating as well). Instead, we need to repeat the process of
estimation several times, each time on a different train/test set and
report on the average score.

�21

Turns out that for every class
value the majority of data
instances has been predicted to
the ribosomal class (green).
Why? Green again (like green
from the Scatter Plot of the
messed-up data)? Here is a hint:
use the Box Plot widget to
answer this question.

We needed to class-randomize
only the training data set to fail
in predictions. Try changing the
workflow so that the classes are
randomized only there, and not
in the test set.

Introduction to Data Mining (GS-GE-402) September 2018

Lesson 10: Cross-Validation
Estimating the accuracy may depend on a particular split of the
data set. To increase robustness, we can repeat the measurement
several times, each time choosing a different subset of the data for
training. One such method is cross-validation. It is available in
Orange through the Test & Score widget.

Note that in each iteration, Test & Score will pick part of the data
for training, learn the predictive model on this data using some
machine learning method, and then test the accuracy of the
resulting model on the remaining, test data set. For this, the
widget will need on its input a data set from which it will sample
data for training and testing, and a learning method which it will
use on the training data set to construct a predictive model. In
Orange, the learning method is simply called a learner. Hence, Test
& Score needs a learner on its input. A typical workflow with this
widget is as follows.

This is another way to use the Tree widget. In the workflows from
the previous lessons we have used another of its outputs, called
Model: its construction required the data. This time, no data is
needed for Tree, because all that we need from it a learner.

Here we show Test & Score widget looks like. CA stands for
classification accuracy, and this is what we really care for for now.
We will talk about other measures, like AUC, later.

�22

For geeks: a learner is an object
that, given the data, outputs a
classifier. Just what Test & Score
needs.

Cross validation splits the data
sets into, say, 10 different non-
overlapping subsets we call
folds. In each iteration, one fold
will be used for testing, while the
data from all other folds will be
used for training. In this way,
each data instance will be used
for testing exactly once.

