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Interactive and Visual
Approaches to Data Mining

Working notes for the hands-on course at the
Indian Statistical Institute, Kolkata

These notes include Orange

workflows and visualizations we

will construct during the course.

The working notes were
prepared by Blaz Zupan and

Janez Demsar with help from the

members of the Bioinformatics

Lab in Ljubljana that develop

and maintain Orange.

QOO0

Welcome to the course on Interactive and Visual Approaches to
Data Mining! This course is designed for students and researchers
of life sciences. You will see how common data mining tasks can be
accomplished without programming. We will use Orange to
construct visual data mining workflows. Many similar data mining
environments exist, but the lecturer prefers Orange for one simple
reason—he is one of its authors.

If you haven't already installed Orange, please download the
installation package from http://orange.biolab.si.

Attribution-NonCommercial-NoDerivs
CC BY-NC-ND
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A screenshot above shows a
simple workflow with two
connected widgets and one
widget without connections. The
outputs of a widget appear on
the right, while the inputs appear
on the left.
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Lesson 1: Workflows in Orange

Orange workflows consist of components that read, process and
visualize data. We call them “widgets.” We place the widgets on a
drawing board (the “canvas”). Widgets communicate by sending
information along with a communication channel. An output from
one widget is used as input to another.

@ File and Data Table

A File widget. Double A Data Table widget.
click to open it and Double click the icon
select the data set file. to see the datain a
spreadsheet. The output of the
Data Table to send
out any data (rows)
that are selected to

D the widget.
File \ Data Table \

This output is not used, hence

. dashed line. You can add

The output of the The input of the another Data Table by clicking
File widget. Data Table widget. on its icon from the toolbox on
the left, connect the ouput of
Data Table to the input of new
Data Table (1) and check if the
selected data from Data Table is
indeed sent to the downstream
widget. This demo works best if
both widgets are open, that is,

The communication
channel. It passes the
data set from the File
widget to the Data

Table. their windows displayed.
A widget that has not
4 been connected to
.- any other widget.
....
Scatter Plot

We construct workflows by dragging widgets onto the canvas and
connecting them by drawing a line from the transmitting widget to
the receiving widget. The widget’s outputs are on the right and the
inputs on the left. In the workflow above, the File widget sends
data to the Data Table widget.



Workflow with a File widget that
reads data from disk and sends it
to the Scatter Plot and Data
Table widget. The Data Table
renders the data in a
spreadsheet, while the Scatter
Plot visualizes it. Selected data
points from the Scatterplot are
sent to two other widgets: Data
Table (1) and Scatter Plot (1).

Orange workflows often start
with a File widget. The brown-
selected data set comprises 186
rows (genes) and 81 columns.
Out of the 81 columns, 79
contain gene expressions of
baker’s yeast under various
conditions, one column (marked
as a "meta attribute”) provides
gene names, and one column
contains the “class” value or
gene function.
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Start by constructing a workflow that consists of a File widget, two
Scatter Plot widgets, and two Data Table widgets:

]

Data Table

File o*
e Data Table (1)
Scatter Plot
a5
Scatter Plot (1)

The File widget reads data from your local disk. Open the File
Widget by double clicking its icon. Orange comes with several
preloaded data sets. From these (“Browse documentation data

sets...”), choose brown-selected.tab, a yeast gene expression data
set.

[ JOX J File
O File: brown-selected.tab ﬁ @' Reload
URL: [~ ]

Info

186 instance(s), 79 feature(s), 1 meta attribute(s)
Classification; categorical class with 3 values.

Columns (Double click to edit)

1 alpha0 [ numeric feature
2 alpha? M numeric feature
3 alpha14 M numeric feature
4 alpha 21 [ numeric feature
5 alpha28 [ numeric feature
6 alpha 35 0 numeric feature
Browse documentation data sets Report Apply

After you load the data, open the other widgets. In the Scatter Plot
widget, select a few data points and watch as they appear in widget
Data Table (1). Use a combination of two Scatter Plot widgets,
where the second scatter plot shows a detail from a smaller region
selected in the first scatterplot.



@ Score Plots
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heat 10, spo- mid
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Finished
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Following is more of a side note, but it won’t hurt. Namely, the
scatter plot for a pair of random features does not provide much
information on gene function. Does this change with a different
choice of feature pairs in the visualization? Rank projections (the
button on the top left of the Scatter Plot widget) can help you find
a good feature pair. How do you think this works? Could the
suggested pairs of features be useful to a biologist?

[ XOK ] Scatter Plot
Axis Data
. 0.5 ° Proteas
Axisx: [0 Elu120 <] © oo ®resp
- (e}
Axisy: [Mdiaug 7] ° Ribo
04f €
o
| Find Informative Projections ° o
e 9% o
Jittering: 10 % Oo
0.3 (o}
Jitter numeric values
(e} o) °
Points °
0.2} o ° % °
Color: function 2] 1 o) o)
Shape:  (Same shape) E o b -
= 01l @ > =
e i (o]
Size: (Same size) <] o o
- o
Label:  (No labels) <] g o 3PN
Symbol size: - 0 % o
- o (00)
Opacity:  =———— o o
© -
Plot Properties -01 o -
Show legend o
Show gridlines o
Show all data on mouse hover -0.2| o [o)
Show class density
Show regression line ° o
Label only selected points o e
-0.3
Zoom/Select
kWQ
-0.4
Send Automatically K] ) 03
Save Image Report Elu 120

! Points with missing 'Elu 120' or 'diau g' are not displayed



In this workflow, we have turned
on the option “Show channel
names between widgets” in

File—Preferences.

Orange comes with a basic set of
widgets for data input,
preprocessing, visualization and
modeling. For other tasks, like
text mining, network analysis,
and bioinformatics, there are
add-ons. Check them out by
selecting "Add-ons..."” from the

options menu.
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We can connect the output of the Data Table widget to the Scatter
Plot widget to highlight the chosen data instances (rows) in the
scatter plot.

D Da ta

%
File >

D Selected Data — Data Subset =

Data Table Scatter Plot

How does Orange distinguish between the primary data source and
the data selection? It uses the first connected signal as the entire
data set and the second one as its subset. To make changes or to
check what is happening under the hood, double click on the line
connecting the two widgets.

@ o Edit Links

Data

I  Sclected Data °®
Data Subset .. -

Other Data Ll
D Features
Data Table Scatter Plot
Clear All Cancel oK |

The rows in the data set we are exploring in this lesson are gene
profiles. We can use the Gene Info widget from the Bioinformatics
add-on to get more information on the genes we selected in any of
the Orange widgets.

N & =

File Scatter Plot Gene Info
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Lesson 2: Basic Data Exploration

Let us consider another problem, this time from clinical medicine.
We will dig for something interesting in the data and explore it a
bit with various widgets. You will get to know Orange better and

also learn about several interesting visualizations.

We will start with an empty canvas; to clean it from our previous
lesson, use either File—New or select all the widgets and remove

them (use the backspace/delete key, or Cmd-backspace if you are
on Mac).

Now again, add the File widget and open another documentation

data set: heart_disease. How does the data look?

=

Data Info

O

Data Table

O

3
File 3

Let us check whether standard visualizations tell us anything
interesting. (Hint: look for gender differences. These are always
interesting and occasionally even real.)

Data T ;r
)
2 Box Plot
File ®
o
3
$
Scatter Plot
ih.

Distributions



The two Distributions widgets
get different data: the upper
gets the selected rows, and the
lower gets the others. Double-
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Data can also be split by the value of features — in this case,
gender — and analyze it separately.

. . NG
click the connection between the 202 |.
Oa\a L]

widgets to access setup dialog, \,\a\c‘*‘@

\ . . D Data D Distributions
as you've learned in the previous B "Matched p,
| n. = Da,
esso File Select Rows l..

PY PY — Distributions (1)
elec oOwWs
Conditions
gender Kl is i female T}
“ Add All Variables Remove All

Data Purging

In: ~303 rows, 14 variables
Out: ~97 rows, 13 variables

Report

Remove unused features
Remove unused classes

Send automatically

Send

In the Select Rows widget, we choose the female patients. You can

also add other conditions. Selection of data instances works well
with visualization of data distribution. Try having at least two

widgets open at the same time and explore the data.

Variable

M age

chest pain

) rest SBP

9 cholesterol

fasting blood sugar > 120
rest ECG

[ max HR

exerc ind ang

[ ST by exercise

slope peak exc ST

mainr vaceale ~rnlarad

Precision

Smooth Precise
Bin numeric variables
Group by
diameter narrowing a
Show relative frequencies
Show probabilities: 1 B
Save Image Report

Density

Distributions

0.004

0.003 -

0.002

0.001

N

o1

200

200

cholesterol

600

0.8

0.6

0.4

0.2

Probability



You can play with the widget by
trying different combinations of
1-4 features.
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There are two less known — but great — visualizations for

observing interactions between features.

eo0e Mosaic Display

chest pain

gender B <475 475-555 5565-60.5 =60.5

D age
(None) 2]
Interior Coloring
diameter narrowing &)
Compare with total
male

- ‘I}I}I‘l |||I|||| I\I|||I

asymptomatic atypical ang non-anginal typical ang
chest pain
Save Image Report diameter narrowing: =0 W1

age

©

gender

The mosaic display shows a rectangle split into columns with
widths reflecting the prevalence of different types of chest pain.
Each column is then further split vertically according to gender
distributions within the column. The resulting rectangles are
divided again horizontally according to age group sizes. Within the
resulting bars, the red and blue areas represent the outcome

distribution for each group and the tiny strip to the left of each
shows the overall distribution.

What can you read from this diagram?

Another visualization, Sieve diagram, also splits a rectangle
horizontally and vertically, but with independent cuts, so the areas
correspond to the expected number of data instances assuming the
observed variables are independent. For example, 1/4 of patients
are older than 60, and 1/3 of patients are female, so the area of the
bottom right rectangle is 1/12 of the total area. With roughly 300
patients, we would expect 1/12 x 300 = 25 older women in our data.
There are 34. Sieve diagram shows the difference between the
expected and the observed frequencies by the grid density and the
color of the field.
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See the Score Combinations eoce Sieve Diagram
button? Guess what it does? And 0 age k&> @ gender 124 . Score Combinations |

how it scores the combinations?

(Hint: there are some Greek
letters at the bottom of the

widget.)

male

gender

female

<475 475-565 55.5 - 60.5 2605
N =303 age
X?=6.28, p=0.099

Save Image Report
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Lesson 3: Saving Your Work

If you followed the instructions so far — except for those about

removing widgets — your workflow might look like this.

(1) ™ ’Q»,w =

Datalnfo Data Table

s e
b ® Q Data Table (1
2 ; o2 5 N
£
g &
o . Q;E Sell d Data — Data
D pata  Box Plot e elected Da al .{::
Dafa Scatter Plot Scatter Plot (1)
File ""’a'ched
. B -
S, ata
% %, |
%, L]
Select Rows 3
9 %
% @\ Distributions (1)
i 2
il %
e ih.
Sieve Diagram
Distributions

Mosaic Display

You can save it (File—Save) and share it with your colleagues. Just
don't forget to put the data files in the same directory as the file

with the workflow.

[ JON ) Report

of —= N

3 Select Rows
. Distributions - age 10 20 30 40 50 60 70 80 90

# Sieve Diagram - age vs ge... age

Distribution of 'age'; probabilites for ‘diameter narrowing=1"

Sieve Diagram Sun Aug 28 16, 19:17:49

male

gender

female

N =303 <475 47.5-55.5 55.5 - 60.5 = 60.5

GEsKioIEstSciemol --0.26, p-0.090 age

Save Print

10



One more trick: Pressing Ctrl-C
(or 38-C, on Mac) copies a
visualization to the clipboard, so
you can paste it to another

application.
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Widgets also have a Report button, which you can use to keep a
log of your analysis. When you find something interesting, like an
unexpected Sieve Diagram, just click Report to add the graph to
your log. You can also add reports from the widgets on the path to
this one, to make sure you don't forget anything relevant.

Clicking on the part of the report also allows you to add a

comment.

Clicking on a part of the report also allows you to add a comment.

o |

female

N =303 <475 47.5-555 55.5 - 60.5 =60.5
¥°=6.28, p=0.099 age

Hey, it seems that women are generally older than men. Looks it's good to be a
man...

You can save the report as HTML or PDF, or to a file that includes
all workflows that are related to the report items and which you
can later open in Orange. In this way, you and your colleagues can

reproduce your analysis results.

1"
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Lesson 4: Loading Your Own
Data Set

The data sets we have worked with in previous lessons come with
Orange installation. Orange can read data from spreadsheet file
formats which include tab and comma separated and Excel files.
Let us prepare a data set (with school subjects and grades) in Excel
and save it on a local disk.

[ XON ) 3 » ) Q- Ssearch Sheet at
Home Insert Page Layout Formulas Data

E2 . fx a6 v

A B C D E F G

1 Student English History Algebra Physics Physical

2 | George 2 32 21 46_] 99

3 John 91 65 89 11 29

4 Thomas 51 21 100 100 27

5 James 9 18 61 S0 8

6 John 93 3 12 17 63

7

8

4 > Sheet1 ar
Ready B - o + 100%

In Orange, we can use the File widget to load this data.

" JOX ] File (1)
© File: | grades-small.xlsx E = .. @ Reload
URL: a

Info

5 instance(s), 5 feature(s), 1 meta attribute(s)
Data has no target variable.

Columns (Double click to edit)

1 English M numeric feature

2 History M numeric feature

3 Algebra M numeric feature

4 Physics M numeric feature

5 Physicial M numeric feature

6 Student B string meta

Browse documentation data sets Report Apply

Looks ok. Orange has correctly guessed that student names are
character strings and that this column in the data set is special,
meant to provide additional information and not to be used for
modeling (more about this in the coming lectures). All other
columns are numeric features.

12



LK J

Info

. L. Student
5 instances (no missing values)

. 1 George
5 features (no missing values) T o 9
: ohn
No target variable.
. . 3 Thomas
1 meta attribute (no missing
values) 4 James
5 John

Variables

Show variable labels (if present)
Visualize numeric values

Color by instance classes

Selection

Select full rows

Restore Original Order

Report

Send Automatically
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It is always good to check if Orange read the data correctly. We can

connect our File widget with the Data Table widget,

D Data D

File Data Table

and double click on the Data Table to see the data in the

spreadsheet format.

Data Table
English History
22.000 32.000
91.000 65.000
51.000 21.000
9.000 18.000
93.000 39.000

Algebra

21.000
89.000
100.000
61.000
12.000

Physics

46.000
11.000
100.000
90.000
17.000

Physicial
99.000
29.000
27.000

8.000
63.000

Nice, everything is here.

We can also use Google Sheets, a free online spreadsheet
alternative. Then, instead of finding the file on the local disk, we
would enter its URL address to the File widget's URL entry box.

There is more to input data formatting and loading. We can define

the type and kind of the data column, specify that the column is a

web address of an image, and more. But enough for the first day. If

you would like to dive deeper, check out the documentation page

on Loading your Data, or a video on this subject.

13
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[ JOK J
Info

Data: 303 instances.
Predictors: 1
Task: Classification

Restore Original Order

Show

Predicted class
Predicted probabilities for:

(o]
1

Draw distribution bars
Data View

Show full data set

Output

Original data
Predictions
Probabilities

Report
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Lesson 5: Classification

In one of the previous lessons, we explored the heart disease data.
We wanted to predict which persons have clogged arteries — but
we did not make any predictions. Let's try it now.

D \ Data / \
/ A\ X
File Predictions

This won't do: the widget Predictions shows the data, but no

makes no predictions. It can't. For this, it needs a model. Like this.

Predictions

File iea

Tree

The data is fed into the Tree widget, which uses it to infer a
predictive model. The Predictions widget now gets the data from
the File widget and also a predictive model from the Tree widget.
This is something new: in our past workflows, widgets passed only
data to each other, but here we have a channel that carries a model.

Eredictions The Predictions widget uses the
Tree diameter narrowing age gender chest pi . .
1 1.00:0.00 > 0 63.000 male typical an mOdel to make predlctlons abOUt
> 00010001 67.000 male asymptor. the data and shows them in the
3  0.04:0.96-1 67.000 male asympton
4 0.96:0.04-0 37.000 male non-angir table,
5 0.96:0.04->0 41.000 female atypical al
6  0.96:0.04-0 56.000 male atypical al
7 0.25:0.75 > 1 62.000 female asympton HOW correct are thCSC
8 0.96:0.04-0 57.000 female asympton predictions? DO we have a gOOd
9  0.04:0.96->1 63.000 male asympton
10 0.00:1.00 > 1 53.000 male asympton model? HOW can we tell?
1 1.00:0.00-2>0 57.000 male asympton
12 0.96:0.04>0 56.000 female atypical a| B ( d b f .
13 0.00:1.00 > 1 56.000 male non-angir ut (and even before anSWCrlng
gy £:28:0.78 21, 44,000 mate sweieala - these critical questions), what is a
15 1.00:0.00 - 0 52.000 male non-angir
1 096:0.0420 57.000 male non-angr  tree? How does it look like? How
17 0.25:0.75>1 48.000 male atypical al )
% 0.96:0.040 54.000 male asympon dOe€s Orange create one? Is this
19 0.96:0.04->0 48.000 female non-angir . .
20 0.96:0.04->0 49.000 male atypical al algorlthm Somethlng we Should
21 1.00:0.00->0 64.000 male typical an use? SO many questions to answer
22 1.00:0.00->0

58.000 female typical an

today!

14



The data set we will use is stored

on a server. Copy the web

address and paste it into URL

entry box in the File widget. An

alternative way to access this

data is to use the Data Sets

widget that is currently available

in the Prototypes add-on.

D Data i ) Model — Tree ( ;ﬂ

File Tree

Here’s a warning: this sailing
data is small. Therefore, any

relations inferred from the

classification tree on this page
are unreliable. What should the
size of the data set be to acquire

stronger conclusions?

Tree Viewer
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Lesson 6: Classification Trees

Classification tree is one of the oldest, but still popular, machine

learning methods. We like it since the method is easy to explain

and gives rise to random forests, one of the most accurate machine

learning techniques (more on this later). So, what kind of model is

a classification tree?

Let us load a data set from http://file.biolab.si/datasets/sailing.tab

that records the conditions under which a friend skipper went

sailing, build a tree and visualize it in the Tree Viewer.

eoce
Info

20 instances (no missing values)
3 features (no missing values)

Discrete class with 2 values (no
missing values)
No meta attributes

Variables

Show variable labels (if present)
Visualize continuous values
Color by instance classes

Selection
Select full rows

Restore Original Order

Report

Send Automatically

Tree Viewer

[ Data Table

© ® N O b N =

Sail Outlook Company Sailboat
rainy big big
rainy big small
rainy med big
rainy med small
sunny big big
sunny big small
sunny med big
sunny med big
sunny med small
sunny no small
sunny no big
rainy med big
rainy no big
rainy no big
rainy no small
rainy no small
sunny big big
sunny big small
sunny med big
sunny med big

[ JOX J
Tree
9 nodes, 5 leaves
Display
ZOOM; =
Width:
Depth: | Unlimited
Edge width: Relative to parent

Target class: None B

Save Image Report

med or no
no

Outlook

.
rainy i

no
60.0%, 3/5

71.4%, 1014

big

no
55.0%, 11/20

Company

yes
57.1%, 4/7

Sailboat

We read the tree from
top to bottom. It looks
like this skipper is a
social person; as soon as
there’s company, the
probability of her sailing
increases. When joined
by a smaller group of
individuals, there is no
sailing if there is rain.
(Thunderstorms? Too
dangerous?) When she
has a smaller company,

but the boat at her disposal is big, there is no sailing either.
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Classification trees were hugely

The Rank widget could be used
on its own. Say, to figure out
which genes are best predictors
of the phenotype in some gene
expression data set. Or what
experimental conditions to
consider to profile the genes and
assign their function. Oh, but we

have already worked with a data
set of this kind. What does Rank
tell us about it?

In this class, we will not dive into
definitions. If you are interested,

there's a good explanation of

information gain on
stackoverflow.com.
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Trees place the most useful feature at the root. What would be the
most useful feature? It is the feature that splits the data into two
purest possible subsets. These are then split further, again by the
most informative features. This process of breaking up the data
subsets to smaller ones repeats until we reach subsets where all
data belongs to the same class. These subsets are represented by
leaf nodes in strong blue or red. The process of data splitting can
also terminate when it runs out of data instances or out of useful

features (the two leaf nodes in white).

We still have not been very explicit about what we mean by “the
most useful” feature. There are many ways to measure this. We can
compute some such scores in Orange using the Rank widget,
which estimates the quality of data features and ranks them
according to how much information they carry. We can compute
the scores from the whole data set or from data corresponding to

some node of the classification tree in the Tree Viewer.

i o
D Tree

File EHE

Rank (1)

[

Data Table

Tree Viewer

Rank

[ JOX ) Rank
Scoring for Classification Inf. gain v Gain Ratio Gini

#

4 Information Gain @ Company 3 0.221 0.141 0.141
2
2

%) Gain Rati
o Deoroase Outlook 0.129 0.130 0.085
0.005 0.005 0.003

ANOVA Sailboat
Chi2

ReliefF

FCBF

Select Attributes

© None

All
Manual

Best ranked: 5 v

Send Automatically

Report
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https://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain
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Wherever possible, visualizations
in Orange are designed to
support selection and passing of
the data that applies to it.
Finding interesting data subsets
and analyzing their
commonalities is a central part of
explorative data analysis, a data
analysis approach favored by the
data visualization guru Edward
Tufte.
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Lesson 7: Model Inspection

Here’s another interesting combination of widgets: the
classification tree viewer and the scatterplot. This time, consider
the famous Iris data set (comes with Orange). In the Scatter Plot,
find the best visualization of this data set, that is, the one that best
separates the instances from different classes. Then connect the
Tree Viewer to the Scatterplot. Selecting any node of the tree will

output the corresponding data subset, which will be shown in the
scatter plot.

L]
] i
File Scatter Plot

ks o

Tree Tree Viewer

Distributions

&

Data Table

Just for fun, we have included a few other widgets in this workflow.
In a way, the Tree Viewer widget behaves like the Select Rows
widget, except that the rules used to filter the data are inferred
from the data itself and optimized to obtain purer data subsets.
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Measuring of accuracy is such an
important concept that it would
require its widget. But wait a
while, there's educational value
in reusing the widgets we
already know.
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Lesson 8: Classification Accuracy

Now that we know what classification trees are, the next question
is what is the quality of their predictions. For beginning, we need
to define what we mean by quality. In classification, the simplest
measure of quality is classification accuracy expressed as the
proportion of data instances for which the classifier correctly
guessed the value of the class. Let’s see if we can estimate, or at
least get a feeling for, classification accuracy with the widgets we
already know:

D Data Table
-

File Predictions ||||

i

Tree

Distributions

Let us try this schema with the brown-selected data set. The
Predictions widget outputs a data table augmented with a column
that includes predictions. In the Data Table widget, we can sort
the data by any of these two columns, and manually select data
instances where the values of these two features are different (this
would not work on big data). Roughly, visually estimating the
accuracy of predictions is straightforward in the Distribution
widget, if we set the features in view appropriately.

[ JOX ) Distributions
Variable
Uy uiau T 120
@ diau d Proteas
M diaue ® Resp
M diau f 100} Ribo
M diaug
function
[ Tree 80
[ Tree(Proteas)
[0 Tree(Resp) %
o =
[ Tree(Ribo) 8 4
o
2
Precision w
2 ————— 50 M

Bin numeric variables into 10 bins

Group by 20
function |T]

Show relative frequencies

ok —_—

Show probabilities: (None) [T Pro;eas Relsp Rilbo

Tree
Save Image Report



This lesson has a strange title
and it is not obvious why it was
chosen. Maybe you, the reader,
should tell us what does this
lesson have to do with cheating.

DA

File Randomize Scatter Plot

Randomize widget shuffles the
column in the data table. It can
shuffle the class column, columns
with data features or columns
with meta information. Shuffling
the class column breaks any
relation between features and
the class, keeping the data
points (genes profiles) intact.

Why is the background in this
scatter plot so green, and only
green? Why have the other
colors disappeared after the

class randomization?
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Lesson 9: How to Cheat

At this stage, the classification tree looks very good. There’s only

one data point where it makes a mistake. Can we mess up the data
set so bad that the trees will ultimately fail? Like, remove any

existing correlation between gene expression profiles and class? We
can! There’s the Randomize widget that can shuffle the class
column. Check out the chaos it creates in the Scatter Plot

visualization where there were nice clusters before randomization!

[ XX ) & Scatter Plot

Axis Data
o ® Proteas
Axisx: | [@ diau f | <] ® ® Resp

Axisy: | [® spo- mid o : Ribo
_Rank pojctions_ 8 %o

04}

Jittering: 7%

Jitter continuous values 0.3

Points

Color: [3) function 02

Label: (No labels)

Shape: = (Same shape) 01

(o ol off o]

Size: (Same size)

spo- mid

Symbol size: 1
28 20 o
Set Colors 0110

_.o
(¢}

Opacity:

Plot Properties ° <]

Show legend 02 °

Show gridlines

Show all data on mouse hover e ' °
Show class density -0.3 2

o e ©°
Zoom/Select &> &p
- -0.4| © 0
B (o] {
()

-0.5
Auto send selection is on 1
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Save Graph diau f

Fine. There can be no classifier that can model this mess, right?

Let us test this. We will build classification tree and check its
performance on the messed-up data set.

Scatter Plot

h < ih.

File Randomize - o
.rh Predictions Distributions

Tree
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At this stage, it may be
worthwhile checking how do the
trees look. Try comparing the
tree inferred from original and
shuffled data!

The signals from the Data
Sampler widget have not been
named in our workflow to save
space. The Data Sampler splits
the data to a sample and out-of-
sample (so called remaining
data). The sample was given to
the Tree widget, while the
remaining data was handed to
the Predictions widget. Set the
Data Sampler so that the size of
these two data sets is about

equal.

[ 99 Edit Links

Data Sample Data

T T e [

Nrc. .

| (] Remaining Data Preprocessor

Data Sampler

Clear All

[

File

Tree
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And the result? Here is a screenshot of the Distributions:

[ XOX ) Distributions
Variable 120
— Proteas
M diauc ® Resp
M diaud
0 diaue
M diauf
M diaug
function 80
[ Tree
[ Tree(Proteas)
[ Tree(Resp)

100} Ribo

60

Frequency

Precision

2 —— 50 40

Bin numeric variables into 10 bins

Group by 20

function 9

Show relative frequencies alk L

Show probabilities: (None) [T} Pro{eas Relsp Riiao

Tree
Save Image Report

Most unusual. Almost no mistakes. How is this possible? On a

class-randomized data set?

To find the answer to this riddle, open the Tree Viewer and check
out the tree. How many nodes does it have? Are there many data
instances in the leaf nodes?

It looks like the tree just memorized every data instance from the
data set. No wonder the predictions were right. The tree makes no
sense, and it is complex because it simply remembered everything.

Ha, if this is so, that is, if a classifier remembers everything from a
data set but without discovering any general patterns, it should
perform miserably on any new data set. Let us check this out. We
will split our data set into two sets, training and testing, train the
classification tree on the training data set and then

estimate its accuracy on the test data set.

iia

Predictions Distributions

% ok

Randomize Data Sampler
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Turns out that for every class
value the majority of data
instances has been predicted to
the ribosomal class (green).
Why? Green again (like green
from the Scatter Plot of the

messed-up data)? Here is a hint:

use the Box Plot widget to

answer this question.

We needed to class-randomize

only the training data set to fail

in predictions. Try changing the
workflow so that the classes are
randomized only there, and not
in the test set.
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Let’s check how the Distributions widget looks after testing the

classifier on the test data.

eoce

Variable
NRCCCRS

M diaud

M diaue

M diauf

M diaug
function
(& Tree

[ Tree(Proteas)
m Tree(Resp)
[ Tree(Ribo)

Frequency

Precision
2 ——— 50

Bin numeric variables into 10 bins

Group by

function |T]
Show relative frequencies

Show probabilities:  (None) [T
Save Image Report

Distributions

30

20

1 |
Resp Ribo

Tree

The first two classes are a complete fail. The predictions for

ribosomal genes are a bit better, but still with lots of mistakes. On

the class-randomized training data, our classifier fails miserably.

Finally; this is just as we would expect.

To test the performance (accuracy) of the classification technique,

we have just learned that we need to train the classifiers on the

training set and then test it on a separate test set. With this test,

we can distinguish between those classifiers that just memorize the

training data and those that learn a useful model.

Learning is not only remembering. Rather, it is discovering

patterns that govern the data and apply to new data as well. To

estimate the accuracy of a classifier, we, therefore, need a separate

test set. This assessment should not depend on just one division of

the input data set to training and test set (here’s a place for

cheating as well). Instead, we need to repeat the process of

estimation several times, each time on a different train/test set and

report on the average score.
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S
File o
s iy
{5\0
N
i Test & Score
Tree

For geeks: a learner is an object
that, given the data, outputs a
classifier. Just what Test & Score

needs.

Cross validation splits the data
sets into, say, 10 different non-
overlapping subsets we call
folds. In each iteration, one fold
will be used for testing, while the
data from all other folds will be
used for training. In this way,
each data instance will be used

for testing exactly once.
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Lesson 10: Cross-Validation

Estimating the accuracy may depend on a particular split of the
data set. To increase robustness, we can repeat the measurement
several times, each time choosing a different subset of the data for
training. One such method is cross-validation. It is available in
Orange through the Test & Score widget.

Note that in each iteration, Test & Score will pick part of the data
for training, learn the predictive model on this data using some
machine learning method, and then test the accuracy of the
resulting model on the remaining, test data set. For this, the
widget will need on its input a data set from which it will sample
data for training and testing, and a learning method which it will
use on the training data set to construct a predictive model. In
Orange, the learning method is simply called a learner. Hence, Test
& Score needs a learner on its input. A typical workflow with this
widget is as follows.

This is another way to use the Tree widget. In the workflows from
the previous lessons we have used another of its outputs, called
Model: its construction required the data. This time, no data is

needed for Tree, because all that we need from it a learner.

Here we show Test & Score widget looks like. CA stands for
classification accuracy, and this is what we really care for for now.
We will talk about other measures, like AUC, later.

[ JOX Test & Score
Sampling Evaluation Results
© Cross validation Method v AUC CA F1 Precision Recall
Number of folds: ' 10 &) Tree 0.970  0.957 0.885 0.871 0.900
Stratified

Cross validation by feature

Random sampling
Repeat train/test: 10 |93
Training set size: 66 % &

2 Stratified

Leave one out
Test on train data
Test on test data

Target Class

(Average over classes) | T

Report
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Lesson 11: A Few More Classifiers

We have ended the previous lesson with cross-validation and
classification trees. There are many other, much more accurate
classifiers. A particularly interesting one is Random Forest, which
averages across predictions of hundreds of classification trees. It
uses two tricks to construct different classification trees. First, it
infers each tree from a sample of the training data set (with
replacement). Second, instead of choosing the most informative
feature for each split, it randomly selects from a subset of most
informative features. In this way, it randomizes the tree inference
process. Think of each tree shedding light on the data from a
different perspective. Just like in the wisdom of the crowd, an
ensemble of trees (called a forest) usually performs better than a
single tree.

D Data Let us see if this is really so. We give two learners to the Test
$ A& Learners widget and check if cross-validated classification accuracy

File g Testa score 15 indeed higher for random forest. Choose different classification

i § data sets for this comparison, starting with those we already know

Tree N (hearth disease, iris, brown selected).

“{2‘:’; L 4» Random Forest

Name
Random Forest Random Forest Learner

Basic properties
Number of trees in the forest: 100 °
Consider a number of best attributes at each split 5

Use seed for random generator: 0

Growth control
Set maximal depth of individual trees 3

Stop splitting nodes with maximum instances: 5 z
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What kind of object is sent from
the Test & Score widget to the
Confusion Matrix widget? So far,
we have used widgets that send
data, or even learners. But what
could the Test & Score widget
communicate to other widgets?
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It may be interesting to compare where different classification
methods make mistakes. We can use Confusion Matrix for this
purpose, and then pass the signal from this widget to the Scatter
Plot.

Data

fo} N
Q’é\ o o’
Oa; >
Q & o
File Evaluation o_,e}e’oq}'b Scatter Plot

e’ o Results fex

i Le A xme
&
£ Test & Score Confusion Matrix

Tree \cz;f’

e
i
Random Forest

There are other classifiers we can try. We will briefly mention a few
more, but instead of diving into what they do (we could spend a
semester on this!), we’ll pass on to other important topics in data
mining. At this point, just add them to the workflow above and see
how they perform.

™o A\
Naive Bayes
SVM
Nearest Neighbors

Logistic Regression

It would be nice if we could, at least on the intuitive level,
understand the differences between all these methods and their
variants (every method has some parameters). Remember, the
classification tree finds hyperplanes orthogonal to the axis; those
hyperplanes split the data space to regions with different class
probabilities. The tree’s decision boundaries are flat. Nearest
neighbors classifies the data instance according to the few
neighboring data instances in the training set. Decision boundaries
with this approach could be very complex. Logistic regression
infers just one hyperplane (decision boundary) in an arbitrary
direction. This is similar to support vector machines with linear
kernel, but then again, the kernels with SVM can be changed,
resulting in more complex decision boundaries.

24



++
+

#
e

+, ﬁ*"i
AL T

+#-j-*_;+¢

44

YT
g

&

++*+ +
-¢*++++

+

+
+

*

+

+

+
++

+

+

'E_"-H-

4Ty +
?r ¢+++J 4!_

+

+

T

Zupan, Demsar: Interactive & Visual Approaches to Data Mining Fall 2017

Ok, we have to admit: the above paragraph reads almost like
gibberish. We would need a workflow where we could actually see
the decision boundaries. And perhaps invent the data sets to test
the classifiers. Best in 2D. Maybe, for a start, we could just paint
the data. Time to stop writing this long passage of text, end the

suspense, and construct a workflow that does this all.

2y s (s

PaintData | Predictions Scatter Plot

Be creative when painting the data! Also, instead of SVM, use
different classifiers. Also, try changing the parameters of the
classifiers. Like, limit the depth of the decision tree to 2, or 3, 4. Or
switch from SVM with linear kernel to the radial basis function.
Appropriately set up the scatter plot to observe the changes.

e0e Scatter Plot (1)
Axis Data
Axisx: | [@x
axisy: | @y 0.9
Find Informative Projections
Jittering: = 10 % 0.8
Jitter numeric values
Points 07
Color: SVM O
Shape: Class
0.6
size: | @ svm(eC) B
Label: | (No labels) B .

Symbol size: 0.5

Opacity:

Plot Properties 0.4
Show legend
Show gridlines
Show all data on mouse hover
Show class density 03
Show regression line
Label only selected points

Zoom/Select 0.2

IS |0 || Q

0.1

Send Automatically

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Save Image Report x
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Gene expression data set we will
use was borrowed from Gene
Expression Omnibus. There is a
special widget in Orange
bioinformatics add on that we
could use to fetch this and
similar data sets. Instead, we will
here rely on GEO data set that is
preloaded in Orange: geo-
gds360. Use File and then
“Browse documentation data

sets”.
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Lesson 12: A Sneaky Way to
Cheat

Consider a typical gene expression data sets where we have
samples in rows and genes expressions in columns. These data sets
are usually fat: there are many more genes than samples. Fat data
sets are almost typical for systems biology. When samples are
labeled with phenotype and our task is phenotype classification,
many features (genes) will be irrelevant and most often only a few
will be highly correlated with class. So why not simply first select a
set of most informative features, and then do the whole analysis?
At least cross-validation will then work much faster, as the model
inference algorithms will deal with much smaller data tables. Cool.
What a nice trick! Let’s try it out in the following workflow.

h %, =

Data Table
File . Preprocess
Test & Score
Test & Score (1)

Logistic Regression

The workflow above uses the data preprocessing widget, which we

have configured to select § most informative features.

[ JON ) % Preprocess
Preprocessors 0 Select Relevant Features
=% Discretize Continuous Variables Score
8= Continuize Discrete Variables -
[ Impute Missing Values Information gain u
#% Select Relevant Features
%= Center and Scale Features Strategy
>C Randomize
OFixed |5 a

Percentile 75 009%

Output

Auto commit is on

Observe the classification accuracy obtained on the original data
set, and on the data set with five best selected features. What is
happening? Why?
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Instead of selecting five most
informative features, you can
reduce this number even further.
Say, to two most informative
features. What happens? Why
does accuracy raise after this
change?
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Lesson 13: Cheating Works Even
on Randomized Data

We can push the example from our previous lesson to the extreme.
‘We will randomize the classification data. That is, we will take the
column with the class values and randomly permute it. We will use

the Randomize widget to do this.

Later, we will do classification on this data set. We expect really
low classification accuracy on randomized data set. Then, we will
select five features that are most associated with the class. Even
though we have randomly permuted the classes, there have to be
some features that are weakly correlated with the class. Simply
because we have tens of thousands of features, and we have only a
few samples. There are enough features that some of them
correlate with class simply by chance. Finally, we will score a
random forest on a randomized data set with selected features.

Compare the scores reported by cross-validation on different data
sets in this pipeline. Why is the accuracy in the final one rather
high? Would adding more “most informative features” improve or

degrade the cross-validated performance on a randomized data set?

select five most
Randomize class informative features

N\ N\
0 X 3

) Preprocess
File © Randomize s

A "

'S
Test & Score
Test & Score (1) o
A piy

Logistic Regression Test & Score (2)
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The writing on the right looks
straightforward. But actually one
needs to be extremely careful
not to succumb to overfitting
when reporting results of cross-
validation tests. The literature on
systems biology is polluted with
reporting on overly optimistic
results, and high impact factors
provide no guarantee that
studies were carried out
correctly (in fact, due to a lack of
reviewers from the field of
machine learning, mistakes likely
stay overlooked).

Simon et al. (2003) provides a
great read on this topic. He
found that many of the early
papers in gene expression
analysis reported high accuracy

simply due to overfitting.
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Lesson 14: How to Correctly
Perform Test and Score

To put it simply: never, in any way, transform the data prior to
cross-validation. Any transformation should happen within cross-
validation loop, first on the training set, and then, if required, on a
test set. In a relaxed form: it’s ok to transform the data, but the
transformation should be done independently on the train and the
test set and the transformation on the test set should in no way use
the information about the class value. Data imputation could be an
example of such operation, but again it should be carried out

separately for the train and test set and should not consider classes.

But how do we then correctly apply preprocessing in Orange? The
idea of reducing the number of features prior to inferring a
predictive model may be still appealing, now that we know we can
use it on training data sets (leaving the test set alone). Following

are two workflows that do this correctly.

N -

File o

e )
e preproces™ A
3%

Test & Score

Leal‘ne "

Preprocess

A

Logistic Regression

In this first workflow; we gave the Test & Score widget a
preprocessor (feature selection was used in this example). The Test
& Score widget uses it correctly only on the training sets. This type
of workflow is preferred if we would like to test the effect of

preprocessing on a number of different learning algorithms.
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The Preprocess widget does
not necessary require a data
set on its input. An alternative
use of this widget is to output
a method for data
preprocessing, which we can
then pass to either a learning
method or to a widget for
cross validation.

This is not the first time we
have used a widget that
instead of a data passes
forward a computation
method. All the learners, like
Random Forest, do so. A
learner could get data on its
input and pass a classifier to
its output, or simple pass an
instance of itself, that is, pass a
learning algorithm to
whichever widget could use it.
For instance, to the Test &

Score widget.
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Alternatively, we can include a preprocessor in a learning method.
The preprocessor is now called on the training data set just before
this learner performs inference of the predictive model.

N

0,
U
File g
,b‘ce“ a
o Preprocessor 3
% / Test & Score
Preprocess Logistic Regression

Can you extend this workflow to such an extent that you can test
both a learner with preprocessing by feature subset selection and
the same learner without this preprocessing? How does the
number of selected features affect the cross-validated accuracies?
Does the success of this particular combination of machine
learning technique depend on the input data set? Does it work
better for some machine learning algorithms? Try its performance
on k-nearest neighbors learner (warning: use small data sets, this

classifier could be very slow).

Somehow; in a shy way, we have also introduced a technique for
feature selection, and pointed to its possible utility for
classification problems. Feature subset selection, or FSS in short,
was and still is, to some extent, an important topic in machine
learning. Modern classification algorithms, though, perform it
implicitly, and can deal with a large number of features without the
help of external procedures for their advanced selection. Random
forest is one such technique.
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Data
D i

File
Test & Score

i

Tree

3}

Constant

Learner Leafne,

What do other columns

represent? Keep reading!

diameter narrowing
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Lesson 15: Model Scoring

In multiple choice exams, you are graded according to the number
of correct answers. The same goes for classifiers: the more correct
predictions they make, the better they are. Nothing could make

more sense. Right?

Maybe not. Dr. Smith is a specialist of a type and his diagnosis is
correct in 98% of the cases. Would you consider visiting him if you

have some symptoms related to his speciality?

Not necessarily. His specialty, in fact, are rare diseases (2 out of 100
of his patients have it) and, being lazy, he always dismisses
everybody as healthy. His predictions are worthless — although
extremely accurate. Classification accuracy is not an absolute
measure, which can be judged out of context. At the very least, it
has to be compared with the frequency of the majority class, which

is, in case of rare diseases, quite ... major.

For instance, on GEO data set GDS 4182, the classification tree
achieves 78% accuracy on cross validation, which may be
reasonably good. Let us compare this with the Constant model,
which implements Dr. Smith’s strategy by always predicting the
majority. It gets 83%. Classification trees are not so good after all,
are they?

On the other hand, their accuracy on GDS 3713 is 57%, which
seems rather good in comparison with the §0% achieved by
predicting the majority:.

Method AUC CA F1 Precision Recall
Classification Tree 0.573 0.570 0.585 0.571 0.600
Majority 0.500 0.506 0.672 0.506 1.000

The problem with classification accuracy goes deeper,

A q&g though.
PX%,

Classifiers usually make predictions based on probabilities

they compute. If a data instance belongs to class A with a

o % probability of 80% and to B with a probability of 20%, it is

Logistic Regression(1)

Classes versus probabilities
estimated by logistic regression.
Can you replicate this image?

7 classified as A. This makes sense, right?

Maybe not, again. Say you fall down the stairs and your leg
hurts. You open Orange, enter some data into your favorite model
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These numbers in the Confusion
Matrix have names. An instance
can be classified as positive or
negative; imagine this as being
positive or negative when being
tested for some medical
condition. This classification can
be true or false. So there are four
options, true positive (TP), false
positive (FP), true negative (TN)
and false negative (FN).

Identify them in the table!

Use the output from Confusion
Matrix as a subset for Scatter
plot to explore the data

instances that were misclassified

N

vx

oo vien
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and compute a 20% of having your leg broken. So you assume your

leg is not broken and you take an aspirin. Or perhaps not?
What if the chance of a broken leg was just 10%? 5%? 0.1%?

Say we decide that any leg with a 1% chance of being broken will
be classified as broken. What will this do to our classification
threshold? It is going to decrease badly — but we apparently do

not care. What do we do care about then? What kind of “accuracy”
is important?

Not all mistakes are equal. We can summarize them in the
Confusion Matrix. Here is one for logistic regression on the heart
disease data.

[ NON ) Confusion Matrix
Learners .
Predicted
Logistic Regression
Tree o 1 z
kNN 0 147 17 164
©
2 1 29 110 139
<
3 176 127 303
Show
Number of instances [T

Select

Select Correct
Select Misclassified

Clear Selection

Output

Predictions
Probabilities

Send Automatically

Report

., Logistic regression correctly classifies 147 healthy

persons and 110 of the sick, the numbers on the

File iy Bl Seater Pt djagonal. Classification accuracy is then 257 out of
Test & Score Confusion Matrix 303, which is 85%
s
» ' v 17 healthy people were unnecessarily scared. The
Logistic Regression
o ROC Analysis opposite error is worse: the heart problems of 29
persons went undetected. We need to distinguish
Tree between these two kinds of mistakes.
. .1l.
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If you are interested in a complete
list, see the Wikipedia page on
Receiver operating characteristic,

https://en.wikipedia.org/wiki/

Receiver_operating_characteristic
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We are interested in the probability that a person who has some
problem will be correctly diagnosed. There were 139 such cases,
and 110 were discovered. The proportion is 110 / 139 = 0.79. This

measure is called sensitivity or recall or true positive rate (TPR).

If you were interested only in sensitivity, though, here’s Dr. Smith’s
associate partner — wanting to be on the safe side, she considers

everybody ill, so she has a perfect sensitivity of 1.0.

To counterbalance the sensitivity, we compute the opposite: what
is the proportion of correctly classified negative instances? 147 out
of 164, that is, 90%. This is called specificity or true negative rate.

So, if you'’re classified as OK, you have a 90% chance of actually
being OK? No, it’s the other way around: 90% is the chance of
being classified as OK, if you are OK. (Think about it, it’s not as
complicated as it sounds). If you’re interested in your chance of
being OK if the classifier tells you so, you look for the negative
predictive value. Then there’s also precision, the probability of being
positive if you're classified as such. And the fa//-out and negative
likelibood ratio and ... a whole list of other indistinguishable fancy

names, each useful for some purpose.
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Lesson 16: Choosing the
Decision Threshold

The common property of scores from the previous lesson is that

they depend on the threshold we choose for classifying an instance
as positive. By adjusting it, we can balance between them and find,

say, the threshold that gives us the required sensitivity at an
acceptable specificity. We can even assign costs (monetary or not)
to different kinds of mistakes and find the threshold with the

minimal expected cost.

A useful tool for this is the Receiver-Operating Characteristic

curve. Don’t mind the meaning of the name, just call it the ROC

curve.

Here are the curves for logistic regression, SVM with linear

kernels and naive Bayesian classifier on the same ROC plot.

[ JON ) ROC Analysis
Plot
Target Class 1 — —
1 B [l T
Classifiers — 3 -
I Logistic Regression 0.8 15— $-
W svMm + !
! Naive Bayes :
f
| [
> o6 I -
2
Combine ROC Curves From Folds = ‘
S c
Merge Predictions from Folds u ﬁ ‘I _
2 [ &
© !
o
ROC Convex Hull & 04 ‘ ‘
Show convex ROC curves - T
Show ROC convex hull ”
Analysis T |
. 02| |
Default threshold (0.5) point
Show performance line
FP Cost: 500 ¢
FN Cost: 500 ¢
Prior target class probability: 50% 0
0 0.2 0.4 0.6 0.8 1

Save Image Report

FP Rate (1-Specificity)

The curves show how the sensitivity (y-axis) and specificity (x-axis,

but from right to left) change with different thresholds.
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Sounds complicated? If it helps:
perhaps you remember the term
parametric curve from some of
your math classes. ROCis a
parametric curve where x and y
(the sensitivity and 1 - specificity)
are a function of the same
parameter, the decision
threshold.

ROC curves and AUC are
fascinating tools. To learn more,
read T. Fawcett: ROC Graphs:
Notes and Practical

Considerations for Researchers
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There exists, for instance, a threshold for logistic regression (the
green curve) that gives us 0.65 sensitivity at 0.95 specificity (the
curve shows 1 - specificity). Or 0.9 sensitivity with a specificity of
0.8. Or a sensitivity of (almost) 1 with a specificity of somewhere
around o0.3.

The optimal point would be at top left. The diagonal represents

the behavior of a random guessing classifier.

Which of the three classifiers is the best now? It depends on the
specificity and sensitivity we want; at some points we prefer
logistic regression and at some points the naive bayesian classifier.

SVM doesn’t cut it, anywhere.

There is a popular score derived from the ROC curve, called Area
under curve, AUC. It measures, well, the area under the curve.
This curve. If the curve goes straight up and then right, the area is
1; such an optimal AUC is not reached in practice. If the classifier
guesses at random, the curve follows the diagonal and AUC is o.5.
Anything below that is equivalent to guessing + bad luck.

AUC has a kind of absolute scale. As a rule of a thumb: 0.6 is bad,

0.7 is bearable, 0.8 is publishable and 0.9 is suspicious.

AUC also has a nice probabilistic interpretation. Say that we are
given two data instances and we are told that one is positive and
the other is negative. We use the classifier to estimate the
probabilities of being positive for each instance, and decide that
the one with the highest probability is positive. It turns out that
the probability that such a decision is correct equals the AUC of
this classifier. Hence, AUC measures how well the classifier

discriminates between the positive and negative instances.

From another perspective: if we use a classifier to rank data
instances, then AUC of 1 signifies a perfect ranking, an AUC of 0.5
a random ranking and an AUC of o a perfect reversed ranking.
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In the Paint Data widget, remove
the Class-2 label from the list. If
you have accidentally left it while
painting, don’t despair. The class
variable will appear in the Select
Columns widget, but you can
“remove” it by dragging it into
the Available Variables list.
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Lesson 17: Linear Regression

For a start, let us construct a very simple data set. It will contain a
just one continuous input feature (let’s call it x) and a continuous
class (let’s call it y). We will use Paint Data, and then reassign one
of the features to be a class by using Select Column and moving
the feature y from the list of “Features” to a field with a target
variable. It is always good to check the results, so we are including
Data Table and Scatter Plot in the workflow at this stage. We will
be modest this time and only paint 10 points and will use Put
instead of the Brush tool.

O

o ® FZ Paint Data
iﬂ Data Table
Names -9 b
Variable X x o i .
. Paint Data Select Columns e
Variable Y 'y o’
Class labels
Scatter Plot
08|
[ JOX ) Select Columns
+
Available Variables Features
+ Filter SN D
081 + +
<
* Down
>
+ +
+ Target Variable
Tools 041 + Up Oy
® | + | = i
+ D
Brush Put || Select own
Q Q Meta Attributes
Jitter Magnet Zoom 021 Up
Radius >
Intensity + Down
e ol
e SO ) L L Report Reset Send Automatically
0 02 0.4 0.6 08 1

Save Graph

We would like to build a model that predicts the value of class y
from the feature x. Say that we would like our model to be linear,

to mathematically express it as h(x)=0o+01x. Oh, this is the
equation of a line. So we would like to draw a line through our data
points. The 6 is then an intercept, and 6 is a slope. But there are

many different lines we could draw. Which one is the best one?
Which one is the one that fits our data the most?
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Do not worry about the strange

name of the widget Polynomial

Regression, we will get there in a

moment.

&

Paint Data

[

Select Columns
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The question above requires us to define what a good fit is. Say,
this could be the error the fitted model (the line) makes when it
predicts the value of y for a given data point (value of x). The
prediction is h(x), so the error is h(x) - y. We should treat the
negative and positive errors equally, plus, let us agree, we would
prefer punishing larger errors more severely than smaller ones.
Therefore, it is perfectly ok if we square the errors for each data
point and then sum them up. We got our objective function! Turns
out that there is only one line that minimizes this function. The
procedure that finds it is called linear regression. For cases where
we have only one input feature, Orange has a special widget in the

educational add-on called Polynomial Regression.

Polynomial
Regression

Learner/Predictor Name

#< Univariate Regression

Univariate Regression

Variables
08

Input (& x | T}

Polynomial expansion: 1 o
05

Target @y | T}

03

0.1 02 03 04 05
Al x

0.6 0.7 0.8 09

Looks ok. Except that these data points do not appear exactly on
the line. We could say that the linear model is perhaps too simple
for our data sets. Here is a trick: besides column x, the widget
Univariate Regression can add columns x2, x3... x" to our data set.
The number 7 is a degree of polynomial expansion the widget
performs. Try setting this number to higher values, say to 2, and
then 3, and then, say, to 9. With the degree of 3, we are then fitting

the data to a linear function h(x) = 6y + 01x + 01x2 + 61x3.
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The trick we have just performed (adding the higher order features
to the data table and then performing linear regression) is called
Polynomial Regression. Hence the name of the widget. We get
something reasonable with polynomials of degree 2 or 3, but then
the results get really wild. With higher degree polynomials, we
totally overfit our data.

| JON #< Univariate Regression

Learner/Predictor Name

Univariate Regression

Variables

Input [@ x B
Polynomial expansion: | 2 o

- >
Target @y B

It is quite surprising to see that
linear regression model can
result in fitting non-linear
(univariate) functions. That is,
functions with curves, such as
those on the figures. How is this
possible? Notice though that the
model is actually a hyperplane (a
flat surface) in the space of many
features (columns) that are
powers of x. So for the degree 2,
h(x)=00+01x+01x2 s a (flat)
hyperplane. The visualization
gets curvy only once we plot h(x)

as a function of x.

0.7

06

05

0.4

03

02

0.1

O @ #< Univariate Regression

Learner/Predictor Name 07

Univariate Regression

08
Variables
Input | [§ x [T 05
Polynomial expansion: | 8 *
. o4
Target @y <

03

02

0.1

Overfitting is related to the complexity of the model. In
polynomial regression, the models are defined through parameters

0. The more parameters, the more complex is the model.

Obviously, the simplest model has just one parameter (an
intercept), ordinary linear regression has two (an intercept and a
slope), and polynomial regression models have as many parameters
as is the degree of the polynomial. It is easier to overfit with a
more complex model, as this can adjust to the data better. But is
the overfitted model really discovering the true data patterns?
Which of the two models depicted in the figures above would you

trust more?
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Lesson 18: Regularization

There has to be some cure for the overfitting. Something that
helps us control it. To find it, let’s check what the values of the

parameters 6 under different degrees of polynomials actually are

3 ]

Paint Data Select Columns Polynomial Data Table
Regression

[ JON ] [ Data Table

Info

4 instances (no missing values) coel

1 feature (no missing values) 1.0.019
No target variable. 2 1635
1 meta attribute (no missing 3 -0.500
values) 4 0672

Restore Original Order

Variables

Show variable labels (if present)
Visualize continuous values
Color by instance classes
Set colors

Selection

Select full rows

Auto send is on

Which inference of linear model
would overfit more, the one with
high A or the one with low A?
What should the value of A be to
cancel regularization? What if
the value of A is really high, say
1000?

With smaller degree polynomials values of @ stay small, but then as

the degree goes up, the numbers get really large.

[ @ ] Data Table

Info

name P et coef name
10 instances (no missing values)

E 1 feature (no missing values) 119432 1
e No target variable. -688.141 X
x"2 1 meta attribute (no missing 9657.331 xA2
X3 values) -66492.077 xA3

265050.559 x4
-646026.515 x5
977748.471 X6
-895558.445 X7
454363.339 x"8
-97906.132 X9

Restore Original Order

Variables

© O N o ! bW N

Show variable labels (if present)
Visualize continuous values
Color by instance classes

Set colors

=]

Selection

Select full rows

Auto send is on

More complex models can fit the training data better. The fitted
curve can wiggle sharply. The derivatives of such functions are
high, and so need to be the coeflicients . If only we could force
the linear regression to infer models with a small value of
coefhicients. Oh, but we can. Remember, we have started with the
optimization function the linear regression minimizes, the sum of
squared errors. We could simply add to this a sum of all 6 squared.
And ask the linear regression to minimize both terms. Perhaps we

should weigh the part with 6 squared, say, we some coefficient A,

just to control the level of regularization.
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Internally, if no learner is present
on its input, the Polynomial
Regression widget would use
just its ordinary, non-regularized

linear regression.

[ # Linear Regr...

Learner/Predictor Name

Linear Regression

Regularization

No regularization
© Ridge regression
Lasso regression

Regularization strength

Alpha: 0.1

Apply on every change
Apply
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Here we go: we just reinvented regularization, a procedure that
helps machine learning models not to overfit the training data. To
observe the effects of the regularization, we can give Polynomial

Regression our own learner, which supports these kind of settings.

E I

Paint Data Select Columns A : D
) Polynomial Data Table
~ Regression

Linear Regression

The Linear Regression widget provides two types of regularization.
Ridge regression is the one we have talked about and minimizes

the sum of squared coefficients 6. Lasso regression minimizes the

sum of absolute value of coefficients. Although the difference may
seem negligible, the consequences are that lasso regression may

result in a large proportion of coefficients 6 being zero, in this way

performing feature subset selection.

Now for the test. Increase the degree of polynomial to the max.
Use Ridge Regression. Does the inferred model overfit the data?
How does degree of overfitting depend on regularization strength?
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Paint about 20 to 30 data
instances. Use attribute y as
target variable in Select
Columns. Split the data 50:50 in
Data Sampler. Cycle between
test on train or test data in Test &
Score. Use ridge regression to
build linear regression model.
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Lesson 19: Regularization and
Accuracy on Test Set

Overfitting hurts. Overfit models fit the training data well, but can
perform miserably on new data. Let us observe this effect in
regression. We will use hand-painted data set, split it into the
training (50%) and test (50%) data set, polynomially expand the
training data set to enable overfitting, build a model on it, and test
the model on both the (seen) training data and the (unseen) held-

out data:
pata &
ample et Dat®
o e a
Re
Data Data
E m 5 = Test & Score
il & L %, 5
ke 3
Paint Data Select Columns Data Sampler > o, =
& p
Learn (7:"/ )
o Polynomial
Regression

Linear Regression

Now we can vary the regularization strength in Linear Regression
and observe the accuracy in Test & Score. For accuracy scoring, we
will use RMSE, root mean squared error, which is computed by
observing the error for each data point, squaring it, averaging this

across all the data instances, and taking a square root.

The core of this lesson is to compare the error on the training and
test set while varying the level of regularization. Remember,
regularization controls overfitting - the more we regularize, the less
tightly we fit the model to the training data. So for the training set,
we expect the error to drop with less regularization and more
overfitting, and to increase with more regularization and less
fitting. No surprises expected there. But how does this play out on
the test set? Which sides minimizes the test-set error? Or is the
optimal level of regularization somewhere in between? How do we

estimate this level of regularization from the training data alone?

Orange is currently not equipped with parameter fitting and we
need to find the optimal level of regularization manually: At this
stage, it suffices to say that parameters must be found on the

training data set without touching the test data.
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Download the methylation data
set from http://file.biolab.si/files/

methylation.tab. Predictions of
age from methylation profile
were investigated by Horvath

(2013) Genome Biology
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Lesson 20: Prediction of Tissue
Age from Level of Methylation

Enough painting. Now for the real data. We will use a data set that
includes human tissues from subjects at different age. The tissues
were profiled by measurements of DNA methylation, a mechanism
for cells to regulate the gene expression. Methylation of DNA is
scarce when we are young, and gets more abundant as we age. We

have prepared a data set where the degree of methylation was

14:R115.
expressed per each gene. Let us test if we can predict the age from
the methylation profile - and if we can do this better than by just
predicting the average age of subjects in the training set.
0@ i Test & Score @
Sampling Evaluation Results
D Data Table
© Cross validation Method MSE RMSE MAE R2
Number of folds: 10 2 Mean Learner 100.475 10.024 8.648 -0.016
Leave one out Linear Regression 35.724 5.977 4.745 0.639 File -
Random sampling 0al A

Repeat train/test 10 | °
Relative training set size:
5%

Test on train data
Test on test data

Test & Score
Linear Regression

3}

Using other learners, like random
forests, takes a while on this data
set. But you may try to sample
the features, obtain a smaller
data set, and try various

regression learners.

Constant

This workflow looks familiar and is similar to those for
classification problems. The Test & Score widget reports on
statistics we have not seen before. MAE, for one, is the mean
average error. Just like for classification, we have used cross-
validation, so MAE was computed only on the test data instances
and averaged across 10 runs of cross validation. The results
indicate that our modeling technique misses the age by about §
years, which is a much better result than predicting by the mean

age in the training set.
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Lesson 21: Evaluating Regression

The last lessons quickly introduced scoring for regression, and
important measures such as RMSE and MAE. In classification, a
nice addition to find misclassified data instances was the confusion
matrix. But the confusion matrix could only be applied to discrete
classes. Before Orange gets some similar for regression, one way to

find misclassified data instances is through scatter plot!

This workflow visualizes the

predictions that were performed
on the training data. How would D
you change the widget to use a D n Linear Regression
separate test set? Hint: The —s] - Data Table
Sample widget can help. PaintData  Select Columns e
D Predictions o
Data Table (1) Scatter Plot

We can play around with this workflow by painting the data such
that the regression would perform well on blue data point and fail
on the red outliers. In the scatter plot we can check if the

difference between the predicted and true class was indeed what
we have expected.

[ [ J 7 Paint Data

Names
Variable X x
Variable Y 'y +

Class labels
@ Class-1

| = Cass2 | + *
Class-2 08}

06 +

+
+ | - + +
Tools 04 +

@ + s

Brush Put Select

B o "

Jitter Magnet Zoom 021

Radius
Intensity +

Send on change

[ 0.2 04 0.6 0.8 1
Save Graph
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Variable Definitions

New “ err

Remove

We could, in principle, also mine
the errors to see if we can
identify data instances for which
this was high. But then, if this is
so, we could have improved
predictions at such regions. Like,
construct predictors that predict
the error. This is weird. Could we
then also construct a predictor,
that predicts the error of the
predictor that predicts the error?
Strangely enough, such ideas
have recently led to something
called Gradient Boosted Trees,
which are nowadays among the
best regressors (and are coming

to Orange soon).
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A similar workflow would work for any data set. Take, for instance,

the housing data set (from Orange distribution). Say, just like
above, we would like to plot the relation between true and

predicted continuous class, but would like to add information on
the absolute error the predictor makes. Where is the error coming

from? We need a new column. The Feature Constructor widget

(albeit being a bit geekish) comes to the rescue.

Linear Regression

N

File

abs(y-Linear_Regression)

- a5

Predictions Feature Constructor Scatter Plot

In the Scatter Plot widget, we can

now select the data where the

Select Feature k4 Select Function [T predictor erred substantially and

e0e

Axis Data

Axisx: | (@ MEDV <]
Axis y: (@ Linear Regression E

( Rank projections |
Jittering: 10 %
Jitter continuous values

Points
Color: {Same color) E
Label: | (No labels) B
Shape: = (Same shape) E
Size: @ error E
Symbol size: 20
Opacity: 122

Set Colors
Plot Properties
Show legend

Show gridlines
Show all data on mouse hover
Show class density

Zoom/Select

25 MEVARESS
Auto send selection is on
Save Graph

Linear Regression

explore the results further.

& Scatter Plot

MEDV
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Lesson 22: Feature Scoring and
Selection

Linear regression infers a model that estimate the class, a real-

For this lesson, load the data

from imports-85.tab using the
File widget and Browse valued feature, as a sum of products of input features and their

weights. Consider the data on prices of imported cars in 1985.
Inspecting this data set in a Data

[ ] [ ) Data Table (1)
Table, it shows that some
height curb-weight gine-typ num-of-cylinders gine-si fuel-syst bore stroke
1 48.800 2548.000 dohc four 130.000  mpfi 3.470 2.680 : - e
2 48.800 2548.000 dohc four 130.000  mpfi 3.470 2.680 features? like fuel system, engine
3 52.400 2823.000 ohcv six 152.000  mpfi 2.680 3.470 d h
4 54.300 2337.000 ohc four 109.000 | mpfi 3190 3.400 type and many others, are
5 54.300 2824.000 ohc five 136.000  mpfi 3.190 3.400 di . . 1
B 53100 2507.000 ohc five 136.000 mpfi 3190 3.400 iscrete. Linear regression only
7 55.700 2844.000 ohc five 136.000 | mpfi 3.190 3.400 .
8 55.700 2954.000 ohc five 136.000 mpfi 3.190 3.400 works with numbers. In Orange,
o 55.900 3086.000 ohc five 131.000 | mpfi 3.130 3.400 . . .
10 52.000 3053.000 ohc five 131.000 mpfi 3.130 3.400 linear regression will
" 54.300 2395.000 ohc four 108.000  mpfi 3.500 2.800
12 54300  2395.000 ohc four 108.000 mpfi 3.500 2.800 automatically convert all discrete
13 54.300 2710.000 ohc six 164.000  mpfi 3.310 3.190
14 54.300 2765.000 ohc six 164.000 mpfi 3.310 3.190 Values to numbers, most often
15 55.700 3055.000 ohc six 164.000  mpfi 3.310 3.190
16 55.700 3230.000 ohc six 209.000 | mpfi 3.620 3.390 :
7 53.700 3380.000 ohc six 209.000 | mpfi 3.620 3.390 using several features to r epresent
18 56.300 3505.000 ohc six 209.000 | mpfi 3.620 3.390 a single discrete features. We also
do this conversion manually by
[ ] Continuize

using Continuize widget.
Categorical Features

© Target or first value as base Bef : D
re wi ntin - ata
Most frequent value as base ¢to ¢ co ue, you 08® = @
One attribute per value should check what D
Ignore multinomial attributes .. Continuize Data Table
Remove categorical attributes Contlnulze actually dOCS File g
Treat as ordinal and how it converts the >
Divide by number of values @
nominal features into real-
Numeric Features
valued features. The table Data Table (1)
Leave them as they are .
Normalize by span below should provide

© Normalize by standard deviation sufficient illustration.

Categorical Outcomes

L [ JON | Data Table
O Leaveitasitis

Treat as ordinal symboling=3  1ormalized-losses make=audi make=bmw make=chevrolet make=dodge
Divide by number of values I [RVIV]V) T [VAVIVIV} [VRVIVIV] [VAVIVIV} [VAVIVIV}
One class per value 2 1.000 ? 0.000 0.000 0.000 0.000
3 0.000 ? 0.000 0.000 0.000 0.000
Value Range 4 0.000 1.189 1.000 0.000 0.000 0.000
5 0.000 1.189 1.000 0.000 0.000 0.000
Fromi=1to 8 0.000 ? 1.000 0.000 0.000 0.000
© From0to1 7 0.000 1.019 1.000 0.000 0.000 0.000
8 0.000 ? 1.000 0.000 0.000 0.000
Report 9 0.000 1.019 1.000 0.000 0.000 0.000
10 0.000 ? 1.000 0.000 0.000 0.000
Apply Automatically 1 0.000 1.981 0.000 1.000 0.000 0.000
12 0.000 1.981 0.000 1.000 0.000 0.000
13 0.000 1.868 0.000 1.000 0.000 0.000
14 0.000 1.868 0.000 1.000 0.000 0.000
15 0.000 ? 0.000 1.000 0.000 0.000
16 0.000 ? 0.000 1.000 0.000 0.000
17 0.000 ? 0.000 1.000 0.000 0.000
18 0.000 ? 0.000 1.000 0.000 0.000
19 0.000 -0.028 0.000 0.000 1.000 0.000

20 0.000 -0.679 0.000 0.000 1.000 0.000



Linear Regression

Name
Linear Regression

Regularization

No regularization
Ridge regression (L2)
[o) Lasso regression (L1)

Elastic net regression

Report 9

Regularization strength:

Alpha: 85

Elastic net mixing:

L1 1 [ [} L2
0.82:0.18

Apply Automatically
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Now to the core of this lesson. Our workflow reads the data,
coninuizes it such that we also normalize all the features to bring
them the to equal scale, then we load the data into Linear

Regression widget and check out the feature coeflicients in the
Data Table.

Coefficients —
Data Data oa Data
D) -o{ame )= { i

File Continuize Linear Regression Data Table

In Linear Regression, we will use L1 regularization. Compared
to L2 regularization, which aims to minimize the sum of
squared weights, L1 regularization is more rough and minimizes
the sum of absolute values of the weights. The result of this
“roughness” is that many of the feature will get zero weights.

But this may be also exactly
( ] @® Data Table
what we want. We want to
name coef v
14781.0739...
3736.1386877
3451.7025316
3282.1956614
3132.88673...
1348.37923...
1136.7353605
756.6294283
616.5482117
586.4145233
445.2958132
197.4172805

select only the most

1 intercept

ol - important features, and want
56 engine-size

22 (O to see how the model that
16 make=mercedes-benz
67 horsepower uses only a smaller subset of
41 width

43 curb-weight

68 peak-rpm

37 drive-wheels=rwd
66 compression-ratio

46 engine-type=ohc

features actually behaves.
Also, this smaller set of
features is ranked. Engine size

42_height 119.0028342 is a huge factor in pricing of
70 highway-mpg -0.0000000 .

69 city-mpg -0.0000000 our cars, and so is the make,
64 bore -0.0000000

o ETEREERRET 0.0000000 where Porsche, Mercedes and
62 fuel-system=spdi -0.0000000

61 fuel-system=mpfi 0.0000000 BMW cost more than Other
AN fial-evetam=mfi -0 NnNNNNNN

cars (ok, no news here).

We should notice that the
number of features with non-zero weights varies with
regularization strength. Stronger regularization would result in

fewer features with non-zero weights.
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In the class, we will introduce
clustering using a simple data
set on students and their grades
in English and Algebra. Load the

data set from http://file.biolab.si/

files/grades2.tab.

£

D Data Table
i o
File o
Scatter Plot
eoce 7] Data Table
Info
12 instances Student

2 features (no missing values) Bill

1
No target variable. 2 Cynthia
1 meta attribute (no missing 3 Demi
values) + IEmd
5 George
Variables 6 lan
Show variable labels (if present) 7 Jena
Visualize continuous values 8 Katherine
v 3
[ Color by instance classes o I
Selection 10 Maya
Select full rows 11 Nash
12 Phill

Restore Original Order

Report

Send Automatically

How do we measure the
similarity between clusters if we
only know the similarities
between points? By default,
Orange computes the average
distance between all their pairs
of data points; this is called
average linkage. We could
instead take the distance
between the two closest points
in each cluster (single linkage),
or the two points that are
furthest away (complete
linkage).

English
91.000
51.000

9.000
49.000
91.000
91.000
39.000
20.000
90.000

100.000
14.000
85.000
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Lesson 23: Hierarchical
Clustering

Say that we are interested in finding clusters in the data. That is,
we would like to identify groups of data instances that are close
together, similar to each other. Consider a simple, two-featured
data set (see the side note) and plot it in the Scatter Plot. How
many clusters do we have? What defines a cluster? Which data
instances belong to the same cluster? What would a procedure for

discovering clusters look like?

eoce & Scatter Plot
Axis Data
- 100} Q
Axisx: | [® English | <] Qena ynthia
Axisy: (@ Algebra B
]
Algebra Jittering: 10% '
89.000 Jitter continuous values
100.000 2 Qan
Points
61.000 _
92.000 Color: (Same color) y
49.000 Label: | [ Student B Qa
70 therine
Shape: | (S h;
82.000 ape: | (Sameshape) o £
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Save Image Report

We need to start with a definition of “similar”. One simple

measure of similarity for such data is the Euclidean distance:
square the differences across every dimension, some them and take

the square root, just like in Pythagorean theorem. So, we would
like to group data instances with small Euclidean distances.

Now we need to define a clustering algorithm. We will start with

each data instance being in its own cluster. Next, we merge the
clusters that are closest together - like the closest two points - into

one cluster. Repeat. And repeat. And repeat. And repeat until you

end up with a single cluster containing all points.

This procedure constructs a hierarchy of clusters, which explains

why we call it hierarchical clustering. After it is done, we can
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observe the entire hierarchy and decide which would be a good

point to stop. With this we decide the actual number of clusters.

One possible way to observe the results of clustering on our small
data set with grades is through the following workflow:

Scatter Plot

A

Distances

— &=

Hierarchical

File T
Clustering é é

+

Box Plot

Let us see how this works. Load the data, compute the distances
and cluster the data. In the Hierarchical clustering widget, cut
hierarchy at a certain distance score and observe the
corresponding clusters in the Scatter plot.

You can also observe the properties of the clusters
10

-o

70

40

20

- that is, the average grades in Algebra and English
- in the box plot.
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Lesson 24: Animal Kingdom

Your lecturers spent substantial part of their youth admiring a
particular Croatian chocolate called Animal Kingdom. Each
chocolate bar came with a card — a drawing of some (random)
animal, and the associated album made us eat a lot of chocolate.
Then our kids came, and the story repeated. Some things stay
forever. Funny stuff was we never understood the order in which
Sorsero the cards were laid out in the album. We later learned about
‘ﬁ vo‘ N taxonomy, but being more inclined to engineering we never
' mastered learning it in our biology classes. Luckily, there’s data
mining and the idea that taxonomy simply stems from measuring

the distance between species.

Di{ay{E)r (| (3

File Distances H(i:tlel::{gtr}:fgal Sieve Diagram Data Table
Here we use zoo data (from documentation data sets) with
attributes that report on various features of animals (has hair, has
feathers, lays eggs). We measure the distance and compute the
clustering. Animals in this data set are annotated with type
(mammal, insect, bird, and so on). It would be cool to know if the
clustering re-discovered these groups of animals. We can do this
through marking the clusters in Hierarchical Clustering widget,
and then observing the results in the Sieve Diagram.
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Looks great. Birds, say, are in cluster C6. Cluster C4 consists of

amphibians and some reptiles. And so forth.

Checking this in the Box plot is even cooler. We can get a

distribution of animal types in each cluster:

Variable

domestic
catsize
type
Cluster

Order by relevance

Subgroups
tail
domestic
catsize
type
Cluster

Display
Stretch bars

Send Automatically

Save Image Report

Box Plot
maeptik
[ | 2
mammal
c2 4
mammal
C3 I 38
amphibiaeptile
ca 7
fish reptile
C5 14
bird
C6 I 20
invertebrate
c7
invertebrate
cs8 7
insect invertebrate
Cc9
[¢] 5 10 15 20 25 30 35

40

Or we can turn it around and see how different types of animals

are spread across clusters.

[ JOX }
Variable
domestic
catsize

type
Cluster
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——
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Cluster

Display
Stretch bars

Send Automatically

Save Image Report

Box Plot
ca
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insect NN 8
Cr8 Cc9
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reptile
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What is wrong with those mammals? Why can't they be in one
single cluster? Two reasons. First, they represent 40 % of the data

instances. Second, they include some weirdos. Click on the clusters

in the box plot and discover who they are.
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Lesson 25: Discovering clusters

Can we replicate this on some real data? Can clustering indeed be

useful for defining meaningful subgroups?

Take brown-selected (from documentation data sets) connect the

hierarchical clustering so the you can see a cluster as a subset in

the scatterplot.

A =

Distances Hierarchical
Clustering

N a5

File Scatter Plot

So far, we used the dendrogram to set a cut-off point. Now we will

click on a branch in a dendrogram to select a subset of the data

instances. By combining it with the Scatter Plot widget, we get a

great tool for exploring the clusters. Try it with an appropriate pair

of features to visualize (use Rank projections).

[ JON ] & Hierarchical Clustering
Linkage 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0
- . . : . i
Complete H

[ ]

Annotation
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Pruning

© None

Max depth 10 Y

Selection

<> (<>

Save Graph 0.8 0.7 0.6 0.5 0.4 0.3 0.:

By using a scatter plot or other widgets, an expert can determine

whether the clusters are meaningful.

For this data set, though, we can do something even better. The

data already contains some predefined groups. Let us check how

© Manual
Height ratio  75.0% —
Top N 3
Output
Append cluster IDs
Name Cluster
Place = Meta variable E
Auto send is on
v v - - v T
2 0.1 0
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well the clusters match the classes - which we know, but clustering
did not.

We will use the dendrogram to set a suitable threshold that splits
the data into some three to five clusters. We can plot this data in a
new scatter plot; we find a reasonable pair of attributes and then
set the color of the points to represent the cluster they belong to.
Do the clusters match the actual classes? The result is rather
impressive if you keep two things in mind. First, the clustering
algorithm did not actually know about the classes, it discovered
them by itself. Second, it did not operate on the picture you see in
the scatter plot and in which the clusters are quite pronounced,
but in a 79-dimensional data space with possibly plenty of
redundant features. Yet it identified the three groups of genes
almost without mistakes.

This lessons is not a recipe for what you should be doing in
practice. If your data already contains groups labels, say gene group
annotations, there is no need to discover them (again) by using
clustering. In this case you should be interested in predictive
models from previous lessons. If you do not have such a grouping
but you suspect that the data contains distinct subgroups, run
clustering. The sole purpose of this lesson was to demonstrate that
clustering can indeed find a meaningful subgroups in the data; we
pretend we did not know the groups, use the clustering to discover

them, and checked how well the correspond to the actual groups.
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Try rerunning the clustering from
new random positions and
observe how the centers
conquer the territory. Exciting,
isn't it?
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Lesson 26: k-Means Clustering

Hierarchical clustering is not suitable for larger data sets due to the
prohibitive size of the distance matrix: with 30 thousand objects,
the distance matrix already has almost one billion elements. An

alternative approach that avoids using the distance matrix is k-
means clustering.

K-means clustering randomly selects k centers (with k specified in
advance). Then it alternates between two steps. In one step, it
assigns each point to its closest center, thus forming k clusters. In
the other, it recomputes the centers of the clusters. Repeating
these two steps typically convergences quite fast; even for the big
data sets with millions of data points it usually takes just a couple
of tens or hundreds iterations.

Orange's add-on Educational provides a widget Interactive k-

means, which illustrates the algorithm.

Use the Paint widget to paint some data - maybe five groups of
points. Feed it to Interactive k-means and set the number of
centroids to 5. You may get something like this.

[ JOX J #% Interactive k-Means
Data 1
X @x | T}
Y| @y | T}
0.8
Centroid:
entroids ‘. o
Number of centroids: 5(C ‘ », o
P—— )
0.6
Show membership lines |
>
| .
Manually step through 0.4
: L oo
Recompute Centroids [
Step Back
g $

02 |® ggoNq0®

Speed:

0.2 0.4 0.6 0.8

Save Image

Keep pressing Recompute Centroids and Reassign Membership
until it stops changes. With this simple, two-dimensional data it
will take just a few iterations; with more points and features, it can

take longer, but the principle is the same.
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How do we set the initial number of clusters? That's simple: we

choose the number that gives the optimal clustering.

Well then, how do we define the optimal clustering? This one is a
bit harder. We want small distances between points in the same
cluster and large distances between points from different clusters.
Pick one point, and let A be its average distance to the data points
in the same cluster and let B represent the average distance to the
points from the closest other cluster. (The closest cluster? Just
compute B for all other clusters and take the lowest value.) The
value (B - A) / max(A, B) is called silhouette; the higher the
silhouette, the better the point fits into its cluster. The average
silhouette across all points is the silhouette of the clustering. The
higher the silhouette, the better the clustering.

Now that we can assess the quality of clustering, we can run k-
means with different values of parameter k (number of clusters)

and select k which gives the largest silhouette.

For this, we abandon our educational toy and connect Paint to the
widget k-Means. We tell it to find the optimal number of clusters
between 2 and 8, as scored by the Silhouette.

@ ¥ k-Means
Number of Clusters Scoring (bigger is better)
Fixed: 3|1C k Score
. 2 [0.43
timized fi 2 lto 8l

© Optimized from 3 061

Scoring: = Silhouette [ ¥ 4 |07

Initialization 6 0.70

Initialize with KMeans++ [T 7 |0.64

Re-runs: 10 g | 0.61

Maximal iterations: 300

Output

Append cluster ID as: Class [T}

Name: Cluster
Report Apply Automatically

Works like charm.

Except that it often doesn't. First, the result of k-means clustering
depends on the initial selection of centers. With unfortunate
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selection, it may get stuck in a local optimum. We solve this by re-
running the clustering multiple times from random positions and
using the best result. Second, the silhouette sometimes fails to

correctly evaluate the clustering. Nobody's perfect.

Time to experiment. Connect the Scatter Plot to k-Means. Change
the number of clusters. See if the clusters make sense. Could you
paint the data where k-Means fails? Or where it really works well?
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Lesson 27: Finding Clusters
When There Are None

We saw how clustering can discover the subgroups in the data. The
flip side of this is that algorithms like k-means will always find
them even when they do not actually exist.
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Playing with Paint Data and
k-Means can be quite fun. Try
painting the data where there
are clusters, but k-means does
not find them. Or, actually, finds
the wrong ones. What kind of
clusters are easy to find for k-
means? Are these the kind of
clusters we would actually find in

real data sets?

It is difficult to verify whether the clusters we found are "real".
Data mining methods like clustering can serve only as hints that
can help forming new hypotheses, which must make biological
sense and be verified on new, independent data. We cannot make

conclusions based only on "discovering" clusters.
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Don't get confused: we paint
data and/or visualize it with
Scatter plots, which show only
two features. This is just for an
illustration! Most data sets
contain many features and
methods like k-Means clustering
take into account all features, not

just two.
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Lesson 28: Silhouettes

Consider a two-feature data set which we have painted in the Paint
Data widget. We send it to the k-means clustering, tell it to find
three clusters, and display the clustering in the scatterplot.

o ® & Scatter Plot
Axis Data O
C1
Axisx: | [@x o oc
Axis y: @y B O c3
| ScorePlots o8 @ ©
Jittering: 10 % O

Jitter continuous values O

Points 05 - O O O

Color: 3 Cluster
k Label: | (No labels)

Shape: = (Same shape)

(of ol ol o

Size: (Same size) 0.4+

Opacity:

Plot Properties
Show legend 0.3
Show gridlines
Show all data on mouse hover
Show class density
Label only selected points

Zoom/Select

5 IRV

Send Automatically 012 0.3 o_'4 0.5 016 0.7

Save Image Report X

The data points in the green cluster are well separated from those
in the other two. Not so for the blue and red points, where several
points are on the border between the clusters. We would like to

quantify the degree of how well a data point belongs to the cluster
to which it is assigned.

We will invent a scoring measure for this and we will call it a
silbouette (because this is how it's called). Our goal: a silhouette of 1
(one) will mean that the data instance is well rooted in the cluster,
while the score of o (zero) will be assigned to data instances on the
border between two clusters.

For a given data point (say the blue point in the image on the left),
we can measure the distance to all the other points in its cluster

and compute the average. Let us denote this average distance with
A. The smaller A, the better.
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C3 is the green cluster, and all its
points have large silhouettes.

Not so for the other two.

Below we selected three data
instances with the worst
silhouette scores. Can you guess
where the lie in the scatter plot?
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On the other hand, we would like a data point to be far away from
the points in the closest neighboring cluster. The closest cluster to
our blue data point is the red cluster. We can measure the distances
between the blue data point and all the points in the red cluster,
and again compute the average. Let us denote this average distance

as B. The larger B, the better.

The point is well rooted within its own cluster if the distance to
the points from the neighboring cluster (B) is much larger than the
distance to the points from its own cluster (A), hence we compute

B-A. We normalize it by dividing it with the larger of these two

numbers, S = (B —A) / max{A4, B}. Voila, S is our silhouette score.

Orange has a Silhouette Plot widget that displays the values of the
silhouette score for each data instance. We can also choose a
particular data instance in the silhouette plot and check out its
position in the scatter plot.

, -+ . ::
_‘_I *: o'
Paint Data k-Means Scatter Plot

Silhouette Plot

[ ) ( ] Silhouette Plot (1)
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c perhaps thousands of gene
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. : . : account.
0 0.2 0.4 06 0.8
The total quality of clustering -
Save Image the silhouette of the clustering -
Report is the average silhouette across all

Output
Add silhouette scores
Auto commit

points. When the k-Means widget

searches for the optimal number
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of clusters, it tries different number of clusters and displays the

corresponding silhouette scores.

([ ¥ k-Means (1)
Number of Clusters Scoring (bigger is better)
Fixed: 32 k Score
o — R 2 |0.55
© Optimized from 2l to 8 ¢ n
Scoring: | Silhouette [T 4 | 069
5 |0.70
Initialization 6 |0.51
Initialize with KMeans++ E 7 |0.32
Re-runs: 10 g 030

Maximal iterations: 300

Output

Append cluster ID as: Class [T}

Name: Cluster

Report Apply Automatically

Ah, one more thing: Silhouette Plot can be used on any data, not
just on data sets that are the output of clustering. We could use it
with the iris data set and figure out which class is well separated
from the other two and, conversely, which data instances from one
class are similar to those from another.

We don't have to group the instances by the class. For instance, the
silhouette on the left would suggest that the patients from the
heart disease data with typical anginal pain are similar to each
other (with respect to the distance/similarity computed from all
features), while those with other types of pain, especially non-

anginal pain are not clustered together at all.
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For this example we retrieved

data from http://
www.mapcrow.info/

united_states.html, removed the

city names from the first line and
replaced it with “31 labelled”.

The file is available at http://
file.biolab.si/files/us-

cities.dst.zip. To load it, unzip the

file and use the File Distance
widget from the Prototypes add-

on.
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Lesson 29: Mapping the Data

Imagine a foreign visitor to the US who knows nothing about the

US geography. He doesn’t even have a map; the only data he has is
a list of distances between the cities. Oh, yes, and he attended the

Introduction to Data Mining.

If we know distances between the cities, we can cluster them.

[ —

!

—
1=

D

Portland
Seattle
Denver

San Jose
Oakland
San Francisco
Phoenix
Tucson

Las Vegas
Los Angeles
San Diego
Chicago
Indianapolis
Boston
Baltimore
Washington DC
Philadelphia
New York
Newark
Dallas
Houston
Austin

San Antonio
Miami
Jacksonville
Tampa

New Orleans
Atlanta
Memphis
Anchorage
Honolulu

How much sense does it make? Austin and San Antonio are closer

to each other than to Houston; the tree is then joined by Dallas.
On the other hand, New Orleans is much closer to Houston than

to Miami. And, well, good luck hitchhiking from Anchorage to

Honolulu.

As for Anchorage and Honolulu, they are left-overs; when there

were only three clusters left (Honolulu, Anchorage and the big

cluster with everything else), Honolulu and Anchorage were closer

to each other than to the rest. But not close — the corresponding

lines in the dendrogram are really long.
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We can’t run k-means clustering
on this data, since we only have
distances, and k-means runs on
real (tabular) data. Yet, k-means
would have the same problem as

hierarchical clustering.

J
Honolulu
8
£ Hierarchical
a Clustering
fa)
A' Distances .
‘_....t
Distance File
MDS
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The real problem is New Orleans and San Antonio: New Orleans is
close to Atlanta and Memphis, Miami is close to Jacksonville and
Tampa. And these two clusters are suddenly more similar to each

other than to some distant cities in Texas.

In general, two points from different clusters may be more similar
to each other than to some points from their corresponding

clusters.

To get a better impression about the physical layout of cities,
people have invented a better tool: a map! Can we reconstruct a
map from a matrix of distances? Sure. Take any pair of cities and
put them on paper with a distance corresponding to some scale.
Add the third city and put it at the corresponding distance from
the two. Continue until done. Excluding, for the sake of scale,

Anchorage, we get the following map.

San Antonip, O .
) O (Houston Miami
Sarl Diego Tucson Austin  New Orleans 12MP2
Los Angele®hoenix ®
Dallas Jacksonville
San Jose O 0
O  Las\Vegas Memphis Atlanta
San Frar}cisco
Oakland Denver
( . O
Indianapoli¥Vashington DC
o Rhiladelphia
) Chicago Baltimore
Portland @)
New York
O O
Seattle Nt-:-warkO
Boston

We have not constructed this map manually; of course. We used a
widget called MDS, which stands for Multidimensional scaling.

It is actually a rather exact map of the US from the Australian
perspective. You cannot get the orientation from a map of
distances, but now we have a good impression about the relations

between cities. It is certainly much better than clustering.
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Remember the clustering of animals? Can we draw a map of
animals?
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Does the map make any sense? Are similar animals together? Color
the points by the types of animals and you should see.

The map of the US was accurate: one can put the points in a plane
so that the distances correspond to actual distances between cities.
For most data, this is usually impossible. What we get is a

projection (a non-linear projection, if you care about mathematical

finesses) of the data. You lose something, but you get a picture.

The MDS algorithm does not always find the optimal map. You
may want to restart the MDS from random positions. Use the
slider “Show similar pairs” to see whether the points that are
placed together (or apart) actually belong together. In the above
case, the honeybee belongs closer to the wasp, but could not fly
there as in the process of optimization it bumped into the hostile
region of flamingos and swans.
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Lesson 30: Principal
Component Analysis

Which of the following three scatterplots (showing x vs. y, x vs. z
and y vs. z) for the same three-dimensional data gives us the best
picture about the actual layout of the data in space?

o

o

_5 . . . . .
-10 0 10 20 30 40 50

Yes, the first scatter plot looks very useful: it tells us that x and y
are highly correlated and that we have three clusters of somewhat
irregular shape. But remember: this data is three dimensional.

What is we saw it from another, perhaps better perspective?
(No-spoilers-here; but we'll add the figure after the lecturel)

Let's make another experiment. Go to https:/in-the-sky.org/
ngcid.php, disable Auto-rotate and Show labels and select Zoom to

show Local Milky Way. Now let's rotate the picture of the galaxy to
find the layout of the stars.

Think about what we've done. What are the properties of the best

projection?

‘We want the data to be as spread out as possible. If we look from
the direction parallel to the galactic plane, we see just a line. We
lose one dimension, essentially keeping just a single coordinate for
each star. (This is unfortunately exactly the perspective we see on
the night sky: most stars are in the bright band we call the milky
way, and we only see the outliers.) Among all possible projections,
we attempt to find the one with the highest spread across the
scatter plot. This projection may not be (and usually isn't)
orthogonal to any axis; it may be projection to an arbitrary plane.

We again talk about two dimensional projection only for the sake

of illustration. Imagine that we have ten thousand dimensional
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data and we would like, for some reason, keep just ten features.
Yes, we can rank the features and keep the most informative, but
what if these are correlated and tell us the same thing? Or what if
our data does not have any target variable: with what should the
"good features" be correlated? And what if the optimal projection
is not aligned with the axes at all, so "good" features are

combinations of the original ones?

We can do the same reasoning as above: we want to find a 10-
dimensional (for the sake of examples) projection in which the data
points are as spread as possible.

How do we do this? Let's go back to our everyday's three
dimensional world and think about how to find a two-dimensional
projection.

Imagine you are observing a swarm of flies; your data are their
exact coordinates in the room, so the position of each fly is
described by three numbers. Then you discover that your flies
actually fly in a formation: they are (almost) on the same line. You
could then describe the position of each fly with a single number
that represents the fly's position along the line. Plus, you need to
know where in the space the line lies. We call this line the first
principal component. By using it, we reduce the three-dimensional

space into a single dimension.

After some careful observation, you notice the flies are a bit spread
in one other direction, so they do not fly along a line but along a
band. Therefore, we need two numbers, one along the first and one

along the — you guessed it — second principal component.

It turns out the flies are actually also spread in the third direction.
Thus you need three numbers after all.

Or do you? It all depends on how spread they are in the second and
in the third direction. If the spread along the second is relatively
small in comparison with the first, you are fine with a single

dimension. If not, you need two, but perhaps still not three.

Let's step back a bit: why would one who carefully measured
expressions of ten thousand genes want to throw most data away
and reduce it to a dozen dimensions? The data, in general, may not
and does not have as many dimensions as there are features. Say

you have an experiment in which you spill different amounts of
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two chemicals over colonies of amoebas and then measure the
expressions of 10.000 genes. Instead of flies in a three-dimensional
space, you now profile colonies in a 10,000-dimensional space, the
coordinates corresponding to gene expressions. Yet if expressions
of genes depend only on the concentrations of these two
chemicals, you can compute all 10,000 numbers from just two.
Your data is then just two-dimensional.

A technique that does this is called Principle Components
Analysis, or PCA. The corresponding widget is simple: it receives
the data and outputs the transformed data.

The widget allows you to select the

0.827

number of components and helps
you by showing how much

pd

/

information (technically: explained
variance) you retain with respect to
the number of components
(brownish line) and the amount of
information (explained variance) in

each component.

The PCA on the left shows the scree

0.022

Scatter Plot

diagram for brown-selected data. Set

7 9 1 13

Principal Components

15 17 19

like this, the widget replaces the 8o
features with just seven - and still
keeping 82.7% of information. (Note: disable "Normalize data"
checkbox to get the same picture.) Let us see a scatter plot for the

first two components.
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The axes, PCr and PCz2, do not correspond to particular features in
the original data, but to their linear combination. What we are
looking at is a projection onto the plane, defined by the first two
components. When you consider only two components, you can
imagine that PCA put a hyperplane into multidimensional space
and projecting all data into it.

Note that this is an unsupervised method: it does not care about
the class. The classes in the projection may be be well separated or

not. Let's add some colors to the points and see how lucky we are

Relative density

this time.
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In the above schema we use the ordinary Test & Score widget, but
renamed it to “Test on original data” for better understanding of
the workflow.

On the original data, Logistic regression gets 98% AUC and
classification accuracy. If we select just single component in PCA,
we already get a 93%, and if we take two, we get the same result as
on the original data.

PCA is thus useful for multiple purposes. It can simplify our data
by combining the existing features to a much smaller number of
features without losing much data. The directions of these features
may tell us something about the data. Finally, it can find us good
two-dimensional projections that we can observe in scatter plots.
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Lesson 31: Image Embedding

Every data set so far came in the matrix (tabular) form: objects (say,
tissue samples, students, flowers) were described by row vectors
representing a number of features. Not all the data is like this;
think about collections of text articles, nucleotide sequences, voice
recordings or images. It would be great if we could represent them

This depiction of deep learning in the same matrix format we have used so far. We would turn

network was borrowed from collections of, say, images, into matrices and explore them with the

: ?
http://www.amax.com/blog/? familiar prediction or clustering techniques.

Deep Neural Network Until very recently, finding useful
representation of complex objects

such as images was a real pain.

Now, technology called deep

40 learning is used to develop

O models that transform complex

: 8 objects to vectors of numbers.
/4

Consider images. When we,

Output Layer

humans, see an image, our neural

Input Layer

networks go from pixels, to spots,

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

to patches, and to some higher
order representations like
squares, triangles, frames, all the
way to representation of complex
objects. Artificial neural networks

used for deep learning emulate

edges combinations of edges object models these through Iayers of
computational units (essentially,
logistic regression models and some other stuff we will ignore
here). If we put an image to an input of such a network and collect
the outputs from the higher levels, we get vectors containing an
abstraction of the image. This is called embedding.

Deep learning requires a lot of data (thousands, possibly millions
of data instances) and processing power to prepare the network.
We will use one which is already prepared. Even so, embedding
takes time, so Orange doesn't do it locally but uses a server
invoked through the ImageNet Embedding widget.

B—(= )0

Import Images ~ ImageNet Embedding Data Table 67
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Image embedding describes the images with a set of 2048 features

appended to the table with meta features of images.

] Data Table
mage name image size width  height n0 n n2 n3 nd n5 n6
image
1 calf /Users/bla... 45538 191 152 0.181 0.212 0.041 0.016 0.180 0.071 0.2
2 cat /Users/bla... 22193 105 137 0.055 0.156 0.649 0.000 0.156 0.136 0.2t
3 chick /Users/bla... 14891 85 92 0.127 0.032 0.097 0.015 0.169 0.080 0.1(
4 cow /Users/bla... 62159 210 189 0.475 0.130 0.048 0.082 0.130 0.599 0.2
5 dog /Users/bla... 28745 129 125 0.049 0.187 0.181 0.111 0.188 0.516 0.8¢
6 duck /Users/bla... 39583 158 172 0.131 0.037 0.073 0.040 0.162 0.221 0.1¢
7 duckling | /Users/bla... 17109 99 119 0.068 0.050 0.033 0.055 0.184 0.189 0.1
8 foal /Users/bla... 39210 147 177 0.061 0.252 0.040 0.155 0.481 0.348 0.10
9 goat /Users/bla... 53039 221 179 0.265 0.124 0.017 0.019 0.176 0.110 0.2!
10 goose /Users/bla... 34442 141 202 0.355 0.246 0.159 0.000 0.422 0.374 0.1(
11 _hen /Users/bla... 41716 134 168 0.389 0.062 0.037 0.083 0.429 0.218 0.1
12 horse /Users/bla... 69109 285 195 0.280 0.229 0.084 0.095 0.387 0.295 0.2(
13 kid /Users/bla... 36290 170 160 0.131 0.140 0.024 0.067 0.130 0.030 0.1¢
14 lamb /Users/bla... 35520 123 168 0.358 0.034 0.189 0.055 0.331 0.162 0.4(
15 ox /Users/bla... 56401 191 189 0.520 0.003 0.096 0.106 0.139 0.235 0.2t

We have no idea what these features are, except that they

represent some higher-abstraction concepts in the deep neural
network (ok, this is not very helpful in terms of interpretation).

Yet, we have just described images with vectors that we can

compare and measure their similarities and distances. Distances?
Right, we could do clustering. Let’s cluster the images of animals

and see what happens.

B ) A = &=

Import Inages  ImageNet Embedding Distances H(i}ﬁz{gtgi;:;l Image Viewer
To recap: in the workflow about we have loaded the images from
the local disk, turned them into numbers, computed the distance
matrix containing distances between all pairs of images, used the
distances for hierarchical clustering, and displayed the images that
correspond to the selected branch of the dendrogram in the image
viewer. We used cosine similarity to assess the distances (simply
because of the dendrogram looked better than with the Euclidean
distance).
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Even the lecturers of this course were surprised at the result.
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In this lesson, we are using
images of yeast protein
localization (http://file.biolab.si/
files/yeast-localization-small.zip)

in the classification setup. But
this same data set could be
explored in clustering as well.
The workflow would be the
same as the one from previous
lesson. Try it out! Do Italian cities

cluster next to American or are

]

Data Table

4]

Bl

Import Images

ImageNet Embedding

v.a

Logistic Regression
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Lesson 32: Images and

Classification

We can use image data for classification. For that, we need to

associate every image with the class label. The easiest way to do

this is by storing images of different classes in different folders.

Take, for instance, images of yeast protein localization. Screenshot

of the file names shows we have stored them on the disk.

[ NON | yeast-localization-small
< 3 = = RETE 2
Name ~ Size D
v cytoplasm -- Ti
E YALOO5C.jpg 163 KB 2
H YALO11W.jpg 269 KB 2
B YALO12W.jpg 256 KB 2
B YAR019C.jpg 256 KB 2
& YAR071W.jpg 276 KB 2
H YBLOO1C.jpg 162 KB 2
B YBLOO8W.jpg 256 KB 2
H YBLO16W.jpg 180 KB 2
H YBLO19W.jpg 41KB 2
H YBLO36C.jpg 256 KB 2
YBLO39C.jpg 298 KB 2
B YBLO51C.jpg 184 KB 2
v endosome -- Ti
B YBLO17C.jpg 224 KB 2
Il YBRO97W.jpg 185 KB 2
B YDR323C.jpg 184 KB 2
B YDR456W.jpg 213 KB 2
H YGR206W.jpg 211 KB 2
H YJLO53W.jpg 223 KB 2
W YJR044C.jpg 233KB 2
B YLRO25W.jpg 232 KB 2
Ti
3 2
3 2
Ol v R
A HHE G
Test & Score  Confusion Matrix Image Viewer

Localization sites
(cytoplasm, endosome,
endoplasmic reticulum)
will now become class
labels for the images. We
are just a step away from
testing if logistic
regression can classify
images to their
corresponding protein
localization sites. The data
set is small: you may use
leave-one-out for
evaluation in Test & Score
widget instead of cross

validation.

At about 0.9 the AUC
score is quite high, and we
can check where the
mistakes are made and
visualize these in an Image

Viewer.
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For the End

The course on Visual Approaches to Data Mining ends here. We
covered quite some mileage, and we hope we have taught you some
essential procedures that should be on the stack of every data
scientists. The goal was to get you familiar with basic techniques,
tools, and concepts of data science and teach you have to visually
explore data and models. Data science is a vast field, and it takes
years of study and practice to master it. You may never become a
data scientist, but as an expert in some other field, it should now
be easier to talk and collaborate with statisticians and computer
scientists. And for those who want to go ahead with data science,

well, you now know where to start.
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