
This code trains a simple linear regression model using PyTorch. Here's a breakdown,
focusing on how the data is prepared for PyTorch:

Data Loading and Preprocessing

df = pd.read_excel('body-fat-brozek.xlsx')

X = df.iloc[:, :-1].values

X = (X - X.mean(axis=0)) / X.std(axis=0) # Z-score normalization

ys = df.iloc[:, -1].values

• Loads a dataset from an Excel file into a Pandas DataFrame.
• X : all columns except the last one (features).
• ys : last column (target).
• Features are standardized: zero mean and unit variance.

Conversion to PyTorch Tensors

def to_tensor(X):

return torch.tensor(X, dtype=torch.float32)

• Wraps torch.tensor(...) to ensure all inputs are converted to 32-bit floats, the
default for PyTorch models.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Train-Test Split and Tensor Conversion

X_train, X_test, ys_train, ys_test = (

to_tensor(d) for d in train_test_split(X, ys, test_size=0.5, random_state=42)

)

X_train = to_tensor(X_train)

ys_train = to_tensor(ys_train).view(-1, 1)

X_test = to_tensor(X_test)

ys_test = to_tensor(ys_test).view(-1, 1)

• Uses train_test_split to divide data 50/50.
• Converts each split to PyTorch tensors.
• .view(-1, 1) reshapes the targets to a column vector shape (needed for

PyTorch's nn.Linear , which expects 2D inputs).

Model and Optimizer Setup

model = nn.Linear(X.shape[1], 1)

optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

• nn.Linear : a linear regression model with X.shape[1] input features and 1
output.

• SGD optimizer updates weights using stochastic gradient descent.
• Alternative Adam optimizer is commented out.

Training Loop

for epoch in range(10000):

optimizer.zero_grad()

loss = nn.MSELoss()(model(X_train), ys_train)

loss.backward()

optimizer.step()

• For 10,000 epochs:
◦ Computes predictions and MSE loss.
◦ Backpropagates gradients.
◦ Updates weights using the optimizer.
◦ Prints loss every 1000 epochs.

Evaluation and Feature Importance

with torch.no_grad():

mae = torch.mean(torch.abs(model(X_test) - ys_test)).item()

...

• Disables gradient tracking (torch.no_grad()).
• Computes Mean Absolute Error on the test set.
• Retrieves learned weights: model.weight.data .
• Prints feature importances sorted by absolute weight.

Summary of PyTorch-specific parts:
• Converts NumPy arrays to torch.tensor(...) , using .float32 .
• Model is built with nn.Linear .
• Loss is nn.MSELoss() .
• Optimization via torch.optim.SGD .
• Training includes zero_grad() , backward() , and step() .
• Evaluation uses .no_grad() and .item() for scalar conversion.

Let me know if you'd like a diagram or a Jupyter-ready version.

	Data Loading and Preprocessing
	Conversion to PyTorch Tensors
	Train-Test Split and Tensor Conversion
	Model and Optimizer Setup
	Training Loop
	Evaluation and Feature Importance
	Summary of PyTorch-specific parts:

