
Let us have two-dimensional vectors:

and you use a polynomial kernel of degree 2, which is:

Let's expand this:

First, compute the dot product:

Thus:

Expand the square:

But we want to find the explicit feature map ϕ(x), so that:

The trick is to define ϕ(x) with all degree 2 monomials and degree 1 monomials (and
constant term), namely:

The square roots of 2 are there to match the expansion properly and make inner products
work out exactly.

Summary:
The explicit transfer function (feature mapping) is:

x = (x1, x2), z = (z1, z2)

K(x, z) = (x ⋅ z + 1)2

x ⋅ z = x1z1 + x2z2

K(x, z) = (x1z1 + x2z2 + 1)2

= (x1z1)2 + 2(x1z1)(x2z2) + (x2z2)2 + 2(x1z1) + 2(x2z2) + 1

K(x, z) = ϕ(x) ⋅ ϕ(z)

ϕ(x) = (x1
2, 2x1x2, x2

2, 2x1, 2x2, 1)

ϕ(x1, x2) = (x1
2, 2x1x2, x2

2, 2x1, 2x2, 1)
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Representer Theorem and the Role of
the Norm in Kernel Methods
In many machine learning problems, especially those involving kernels, we aim to find a
function f that fits the training data well while remaining simple. This idea is formalized
through regularized risk minimization, where we minimize an objective of the form:

Here:

• L(yi, f(xi)) measures how well f fits the data (loss function),
• ∥f∥H is the norm of f in a Hilbert space H,
• λ > 0 is a regularization parameter controlling the trade-off between fitting and

simplicity.

The Representer Theorem states that even though f could live in an infinite-dimensional
space, the solution can always be written as a finite linear combination of the training
examples mapped into the feature space:

where:

• K(xi, x) is the kernel function, which measures similarity between xi and x,
• and αi are real-valued coefficients to be determined.

The kernel function K implicitly defines a feature mapping ϕ such that:

meaning K(xi, xj) computes the inner product between xi and xj in the feature space,
without needing to explicitly map them.

f
min

i=1

∑
n

L(yi, f(xi)) + λ∥f∥H
2

f(x) =
i=1

∑
n

αiK(xi, x)

K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩



Thus, instead of searching over all possible functions, it suffices to find the n coefficients αi,
greatly simplifying the optimization.

Understanding the Norm ∥f∥H

The term ∥f∥H measures the "size" or "complexity" of the function f in the Hilbert space H.

• A Hilbert space is a space where notions like angles and lengths between
functions make sense, much like vectors in Euclidean space.

• In kernel methods, the Hilbert space is the space induced by the kernel, where
data may be mapped into very high or infinite dimensions.

• The norm ∥f∥H expresses how complex or "wiggly" f is in this space.

Minimizing ∥f∥H encourages f to be simple and smooth:

• In linear models with a linear kernel, ∥f∥H reduces to ∥w∥, the standard
Euclidean norm of the weight vector w.

• In Gaussian (RBF) kernels, minimizing ∥f∥H encourages functions that are
smooth over the input space.

Thus, the regularization term λ∥f∥H
2 plays a critical role in controlling overfitting and ensuring

that the learned function generalizes well to unseen data.
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