
Kernel Methods
Many machine learning models, such as linear classifiers, regressors, even data projections
and clustering, work well when the data can be modelled with a straight line or a hyperplane.
However, real-world data is often non-linear and not linearly separable. A common strategy to
address this is to map the data into a higher-dimensional space where a linear separator may
exist. Explicitly computing this transformation can be expensive or infeasible, especially in
very high-dimensional spaces, and it may require a lot of memory, particularly when the
original data set already contains many features.

A number of machine learning models can be expressed in terms of inner products between
data instance vectors, measuring, in a way, a similarity between the data instances. Instead of
expanding the vectors into a higher-dimensional feature space and computing inner products
there, kernel methods introduce a trick: they use a kernel function that operates in the original
input space but computes the inner product as if the data were transformed into the higher-
dimensional space. This avoids the need for explicit expansion and reduces computational
and memory costs.

SVMs are a natural starting point for understanding kernel methods, but they are just one
example of methods that can benefit from kernels. In this lesson, we will see how the same
trick applies to other machine learning methods as well. To build this understanding, we begin
with the linear SVM.

Linear SVM: Primal Form
We start with a binary classification problem. Given training examples (xi, yi), where xi ∈
Rd and yi ∈ {−1, 1}, we want to find a hyperplane that separates the two classes.

A hyperplane in Rd is defined by a weight vector w and a bias term b. The decision function
is:

A point x is classified as positive if f(x) > 0 and negative if f(x) < 0.

The primal form is the original formulation of the optimization problem where we directly

f(x) = w⊤x + b

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

solve for w and b. The goal is to find the hyperplane that not only separates the data but does
so with the largest possible margin. We call this the maximum-margin classifier because
we are maximizing the distance between the hyperplane and the closest data points from
each class. A larger margin tends to improve generalization.

To simplify the math, we scale w and b so that for the support vectors (the closest points), the
margin is exactly 1. This leads to the following constraints:

The equation of the hyperplane is w⊤x + b = 0. The distance d from a point x to the
hyperplane is given by:

For the support vectors, which are the points closest to the hyperplane, the constraint
yi(w⊤xi + b) = 1 holds. Substituting into the distance formula, the margin γ is:

Thus, maximizing the margin is the same as minimizing ∥w∥. For mathematical convenience,
we minimize 2

1 ∥w∥2 instead of ∥w∥ directly, because it simplifies the derivatives in the
optimization.

Therefore, the optimization problem becomes:

subject to:

This is known as the hard-margin SVM, which assumes that the data is perfectly linearly
separable. That means there exists at least one hyperplane that separates all positive and
negative examples without error.

This assumption is often unrealistic in practice. Real-world data is noisy and may not be

yi(w⊤xi + b) ≥ 1 for all i

d =
∥w∥

∣w⊤x + b∣

γ =
∥w∥

1

w,b
min

2
1

∥w∥2

yi(w⊤xi + b) ≥ 1 for all i

perfectly separable. In such cases, we use the soft-margin SVM, which allows some violations
of the margin constraints by introducing slack variables. Soft-margin SVMs are more flexible
and applicable to a wider range of data.

However, in this section, we focus on the hard-margin case because it allows us to introduce
the key mathematical ideas behind SVMs more clearly. Most importantly, the dual form of the
hard-margin SVM is simpler and provides the foundation for understanding how kernel
methods work. The kernel trick is applied in the dual, and introducing it in the hard-margin
setting avoids additional complications. We will not cover soft-margin SVMs in detail here, but
the kernelization approach we develop extends naturally to that setting as well.

Deriving the Dual Form
To solve the support vector machine optimization problem, we start with the primal form:

subject to:

This is a constrained optimization problem, meaning we want to minimize an objective
function while satisfying certain conditions on the variables. To handle the constraints
systematically, we introduce Lagrange multipliers αi ≥ 0 for each constraint. Lagrange
multipliers allow us to combine the objective function and the constraints into a single
expression called the Lagrangian. By doing so, we transform the constrained optimization
problem into an unconstrained one, where we can apply calculus techniques to find optimal
solutions. The multipliers αi can be interpreted as forces that push against the constraints,
helping us balance minimizing the objective with satisfying the conditions. Our Lagrangian is:

The idea is to minimize L with respect to the primal variables w and b, and maximize it with
respect to the dual variables αi. To find the dual, we first compute the partial derivatives of L
with respect to w and b and set them to zero:

w,b
min

2
1

∥w∥2

yi(w⊤xi + b) ≥ 1 for all i

L(w, b,α) =
2
1

∥w∥2 −
i

∑αi[yi(w⊤xi + b) − 1]

Substituting w = ∑i αiyixi and using ∑i αiyi = 0 (so ∑i αiyib = b∑i αiyi = 0), we
obtain

and

because yib sums to 0. Expanding:

But w = ∑j αjyjxj , so:

thus:

Putting it together, the first term is 2
1 ∑i,j αiαjyiyjxi

⊤xj , and the second term is
− ∑i,j αiαjyiyjxi

⊤xj + ∑i αi. Thus, the dual becomes:

∂w
∂L

= w −
i

∑αiyixi = 0 ⇒ w =
i

∑αiyixi

∂b
∂L

= −
i

∑αiyi = 0

2
1

∥w∥2 =
2
1 (

i

∑αiyixi)
⊤

(
j

∑αjyjxj) =
2
1

i,j

∑αiαjyiyjxi
⊤xj .

−
i

∑αi[yi(w⊤xi + b) − 1] = −
i

∑αi(yiw⊤xi + yib − 1) = −
i

∑αi(yiw⊤xi − 1)

= −
i

∑αiyiw
⊤xi +

i

∑αi.

w⊤xi = (
j

∑αjyjxj)
⊤

xi =
j

∑αjyjxj
⊤xi,

i

∑αiyiw
⊤xi =

i

∑αiyi
j

∑αjyjxj
⊤xi =

i,j

∑αiαjyiyjxi
⊤xj .

subject to:

In the dual problem, the optimization depends only on the dot products xi
⊤xj between pairs

of training examples. To simplify both the notation and the computation, we introduce the
Gram matrix K , defined by Kij = xi

⊤xj . The Gram matrix collects all pairwise dot products
between training points into a single matrix. It is called a "Gram matrix" because, in linear
algebra, such a matrix arises when computing all inner products between a set of vectors,
and its properties reflect the geometric relationships—such as angles and lengths—between
those vectors. In particular, the Gram matrix is always symmetric and positive semi-
definite, properties that are crucial for the convexity and solvability of the dual optimization
problem.

The dual form is crucial because it reveals important properties of the solution and simplifies
further developments. In the dual, the data points appear only through dot products xi

⊤xj ,
which will later allow us to introduce kernels and extend SVMs to non-linear decision
boundaries.

Moreover, solving the dual often results in sparse solutions: most of the αi will be zero, and
only a small subset of points with αi > 0 — the support vectors — will define the decision
boundary.

Once we solve for the optimal multipliers αi, we can reconstruct the weight vector as:

The bias term b can be computed using any support vector. For a support vector (xs, ys), we
have

which rearranges to

α
maxL(α) =

i

∑αi −
2
1

i,j

∑αiαjyiyjxi
⊤xj

αi ≥ 0,
i

∑αiyi = 0

w =
i

∑αiyixi

ys(w⊤xs + b) = 1,

In practice, it is common to compute b for each support vector and take the average:

where S denotes the set of support vectors.

The decision function for classifying new points is:

and the class for the data instance x is sign(f(x)). This compact representation shows that
only the support vectors are needed for predictions (!), making the model efficient in both
computation and memory. In other words, essentially, we do not need to compute w and bias
(although, as shown above, we can).

Linear SVM and Quadratic Programming: An
Example in Python
We have seen that solving the dual form of a support vector machine leads naturally to a
quadratic programming problem. Let us now recall the objective and show how it can be
solved in practice.

The dual form of the hard-margin SVM optimization problem is:

subject to:

The variables αi are the Lagrange multipliers associated with each training example.

b = ys −
i

∑αiyixi
⊤xs.

b =
∣S∣
1

s∈S

∑ (ys −
i

∑αiyixi
⊤xs) ,

f(x) =
i

∑αiyixi
⊤x + b

α
max

i

∑αi −
2
1

i,j

∑αiαjyiyjxi
⊤xj

αi ≥ 0,
i

∑αiyi = 0

Only a few αi will be nonzero at the solution, corresponding to the support vectors.

To solve this problem with a quadratic programming solver like cvxopt , we need to express
it in the standard form:

subject to:

where the matrices are defined as follows:

• Pij = yiyjxi
⊤xj

• qi = −1 for all i
• G = −I and h = 0, enforcing αi ≥ 0
• A is a row vector of yi values
• b = 0, enforcing ∑i αiyi = 0

We now demonstrate how to solve this problem with synthetic linearly separable data in
Python.

First, we generate a simple 2D dataset:

import numpy as np

import matplotlib.pyplot as plt

from cvxopt import matrix, solvers

Generate synthetic data

np.random.seed(0)

num_samples = 20

X_pos = np.random.randn(num_samples, 2) + np.array([2, 2])

X_neg = np.random.randn(num_samples, 2) + np.array([-2, -2])

X = np.vstack((X_pos, X_neg))

y = np.hstack((np.ones(num_samples), -np.ones(num_samples)))

Next, we set up the matrices for the quadratic program:

x
min

2
1
x⊤Px + q⊤x

Gx ≤ h, Ax = b

Compute the Gram matrix

K = np.dot(X, X.T)

P = matrix(np.outer(y, y) * K)

q = matrix(-np.ones(2 * num_samples))

G = matrix(-np.eye(2 * num_samples))

h = matrix(np.zeros(2 * num_samples))

A = matrix(y, (1, 2 * num_samples), 'd')

b = matrix(0.0)

We solve the quadratic program:

solution = solvers.qp(P, q, G, h, A, b)

alphas = np.array(solution['x']).flatten()

Now, primarily for plotting of our model, we can now find the weight vector w and bias b.

Reconstruct w

w = np.sum(alphas[:, None] * y[:, None] * X, axis=0)

Identify support vectors

support_vectors = alphas > 1e-5

Compute b using any support vector

b_value = np.mean(y[support_vectors] - np.dot(X[support_vectors], w))

Since our data lies in two-dimensions, we can now plot it, together with the decision
boundary and the support vectors, that is, the data items which lie on the decision margins:

Figure: Decision boundary and support vectors for a linear SVM trained via quadratic
programming; support vectors are highlighted with larger markers.

Note that for classifying the new data we would not compute the feature weights and the
intercept. Instead, Once the optimal αi are found, we can classify a new point x by evaluating
the decision function

where the sum runs over all support vectors (those points with αi > 0). This will especially
come handy in the sections that follows, once we move from linear decision boundaries.

In this example, we see how solving the SVM dual problem results in a sparse set of support
vectors, which define the decision boundary. The data points corresponding to nonzero αi
are exactly those lying on the margin, and they are highlighted in the plot.
This simple demonstration shows both the practical use of quadratic programming and the
intuitive structure of the SVM solution.

f(x) =
i

∑αiyiK(xi,x) + b,

Soft Margin Linear SVM
In practice, real-world data is often noisy or overlapping, and perfect linear separability is not
possible. If we apply a hard-margin SVM to such data, the optimization problem may have no
solution at all. To handle this, the soft-margin SVM was introduced, allowing some points to
violate the margin constraints while still aiming to find a hyperplane that separates the data as
well as possible.

The idea is to introduce slack variables ξi ≥ 0 that measure how much each point violates
the margin. The primal optimization problem for the soft-margin SVM becomes:

subject to:

Here, C > 0 is a regularization parameter that controls the trade-off between maximizing the
margin and minimizing the total amount of margin violation.

In the dual form, the only change compared to the hard-margin case is in the inequality
constraint on αi. While for the hard-margin case we required only αi ≥ 0, the soft-margin
dual constraints become:

This means that now each αi is bounded above by C . Let us describe how we came to this
constraint. In the hard-margin SVM, we required that the training points be separated
perfectly. This led to constraints yi(w⊤xi + b) ≥ 1 for all i, and in the dual, the condition on
the Lagrange multipliers was simply αi ≥ 0.

In the soft-margin SVM, we allow violations of the margin by introducing slack variables ξi ≥
0, and the constraint becomes:

To penalize violations, the primal objective function adds a term C ∑i ξi, where C > 0

w,b,ξ
min

2
1

∥w∥2 + C

i

∑ ξi

yi(w⊤xi + b) ≥ 1 − ξi, ξi ≥ 0 for all i

0 ≤ αi ≤ C

yi(w⊤xi + b) ≥ 1 − ξi

controls the strength of the penalty.

When we set up the Lagrangian for this problem, we introduce:

• αi ≥ 0 for the margin constraint,
• μi ≥ 0 for the slack variable constraint ξi ≥ 0.

The full Lagrangian becomes:

Now, take the derivative of L with respect to ξi and set it to zero:

Since μi ≥ 0 and from this equation αi + μi = C , it follows that:

Thus, each αi must satisfy both αi ≥ 0 and αi ≤ C , which together gives:

This is how the constraint in the dual form changes from the hard-margin to the soft-margin
SVM. The upper bound C appears because we explicitly allow controlled margin violations in
the primal. In the soft-margin case, the upper bound C controls how much violation of the
margin is tolerated. If αi = 0, the corresponding point lies outside the margin and is correctly
classified. If 0 < αi < C , the point lies exactly on the margin boundary and is a support
vector. If αi = C , the point is either inside the margin or misclassified. Therefore, the
condition 0 ≤ αi ≤ C reflects the balance between fitting the data and allowing margin
violations when necessary.

Therefore, to modify the code for the soft-margin SVM, we only need to change the matrix G
and the vector h to reflect both lower and upper bounds:

L(w, b, ξ,α,μ) =
2
1

∥w∥2 + C

i

∑ ξi −
i

∑αi[yi(w⊤xi + b) − 1 + ξi] −
i

∑μiξi

∂ξi

∂L
= C − αi − μi = 0

αi ≤ C

0 ≤ αi ≤ C

For soft-margin SVM: enforce 0 <= alpha_i <= C

C_value = 1.0 # Example value of C

Stack two constraints: -alpha <= 0 and alpha <= C

G = matrix(np.vstack((-np.eye(2 * num_samples), np.eye(2 * num_samples))))

h = matrix(np.hstack((np.zeros(2 * num_samples), C_value * np.ones(2 * num_samples))))

All other parts of the code remain exactly the same. By adjusting the value of C , we can
control how strictly we penalize margin violations: large values of C make the SVM behave
like a hard-margin SVM, while smaller values allow for more flexibility and better handling of
noisy data. A typical value of C is between 0.1 and 100, depending on the scale and noise of
the data.

• If C is large (e.g., C = 1000), the SVM will strongly penalize misclassifications,
behaving almost like a hard-margin SVM.

• If C is small (e.g., C = 0.1), the SVM will allow more violations, leading to a
wider margin that tolerates some errors.

In practice, C is often selected using internal cross-validation to find the value that gives the
best generalization on unseen data.

We used the above code, changed the data slightly to introduce overlap of classes, and
obtain the following solution:

Beyond Linearity in SVM: The Kernel Trick
So far, we have seen how a linear SVM can find a separating hyperplane for linearly separable
or almost linearly separable data. However, many real-world datasets are not linearly
separable in the original input space. To illustrate this, let us consider a simple example: the
"moons" dataset, a classic toy dataset where two classes form crescent shapes. This data
cannot be separated by any straight line.

from sklearn.datasets import make_moons

Generate non-linearly separable data

X, y = make_moons(n_samples=100, noise=0.1, random_state=0)

y = 2 * y - 1 # Convert labels from {0,1} to {-1,1}

Figure: Two-dimensional data with non-linear classification boundary and overlap between
the two classes.

If we attempt to apply a linear SVM to this dataset, the results will be poor, as no linear
hyperplane can effectively separate the two classes. This motivates the use of kernels, which
offer a powerful way to extend linear models to non-linear settings.

The key observation is that in the dual formulation of the SVM, the data appears only through
dot products xi

⊤xj . The kernel trick is the idea that we can replace these dot products with a
kernel function K(xi,xj), where the function computes the inner product between ϕ(xi)
and ϕ(xj) in some higher-dimensional feature space. Crucially, we do not need to compute
the mapping ϕ(x) explicitly. We only need a kernel function that gives the correct inner
product in the transformed space.

Since the dual SVM depends only on dot products, replacing them with a kernel function
modifies the decision function accordingly. In the kernelized SVM, the decision function
used to classify a new point x becomes:

f(x) =
i

∑αiyiK(xi,x) + b

where the sum runs over all support vectors (the points with αi > 0). This form shows how
the kernel allows us to operate in a high-dimensional feature space without ever explicitly
computing the mapping.

One intuitive and simple choice of kernel is the polynomial kernel, defined by

where d is the degree of the polynomial and c is a constant controlling the influence of higher-
order terms. In our implementation, using a kernel instead of the plain dot product requires
only a small change: when computing the Gram matrix, instead of using Kij = xi

⊤xj , we
compute K(xi,xj) using the chosen kernel function.

For the polynomial kernel, the Gram matrix is computed as:

Polynomial kernel function

def polynomial_kernel(X, degree=3, coef0=1):

return (np.dot(X, X.T) + coef0) ** degree

Compute the kernel matrix

K = polynomial_kernel(X, degree=3, coef0=1)

P = matrix(np.outer(y, y) * K)

For implementation of SVM, all the other parts of the code—setting up q, G, h, A, b, solving
the quadratic program, and identifying support vectors—remain exactly the same as before.
The only difference lies in how we compute the inner products between data points: instead
of using the standard dot product, we replace it with the value given by the chosen kernel
function.

The followig figure shows the result of our procedure.

K(x,x′) = (x⊤x′ + c)d,

Figure: Decision boundary and margins for SVM with polynomial kernel with degree 3. To plot
this figure, a dense grid of points is generated across the feature space, and the decision
function is evaluated at each point. The decision boundary and margins are drawn as contour
lines corresponding to f(x) = 0 (the boundary) and f(x) = ±1 (the margins). The support
vectors are highlighted with larger circles to emphasize the points that define the structure of
the classifier.

By applying the kernel trick, we can now find flexible, non-linear decision boundaries in the
original input space. This enables SVMs to handle complex data patterns without changing
the core structure of the algorithm.

Intuitively, the kernel function acts as a measure of similarity between two data points, but not
in the original input space. Instead, it measures how similar the points are after an implicit
mapping into a higher-dimensional feature space. Two points x and x′ are considered similar
if K(x,x′) is large, and dissimilar if K(x,x′) is small. In the case of the standard linear
kernel, this similarity reduces to the ordinary dot product x⊤x′. With more complex kernels,
such as the polynomial kernel

the notion of similarity becomes richer, capturing not just the direct alignment of two vectors,
but also higher-order interactions between their components.

This interpretation helps explain how the SVM can separate non-linearly distributed classes.
Instead of relying on the geometric arrangement of points in the original input space, it relies
on the similarities encoded by the kernel function. The optimization problem then seeks a
decision boundary that separates points that are similar in one way from points that are
similar in another, according to the kernel-induced geometry.

Why Calling It a Trick?
The term "kernel trick" is used because it allows us to achieve a powerful transformation
without explicitly performing any complicated or costly computations. In principle, mapping
the data points x into a high-dimensional or even infinite-dimensional feature space via a
function ϕ(x) could be computationally infeasible. However, by using a kernel function
K(x,x′), we can compute the inner products between transformed points directly, without
ever constructing ϕ(x) itself.

The "trick" is that the algorithm operates as if it were working in a high-dimensional space,
benefiting from the increased expressive power, while remaining computationally efficient and
mathematically simple. The structure of the SVM optimization problem does not change; only
the way we compute similarities between data points is modified through the kernel function.
This elegant shortcut is what gives the kernel trick its name.

Common Kernels
Once we understand the kernel trick, it is natural to ask which kernel function we should
choose for a particular problem. Several kernels have become standard tools, each suited to
different types of data and problem settings.

The linear kernel is the simplest kernel, given by

It corresponds to the standard dot product in the original space and leads to a linear decision

K(x,x′) = (x⊤x′ + c)d,

K(x,x′) = x⊤x′.

boundary. It is a good choice when the data is already approximately linearly separable or
when the number of features is very large compared to the number of samples.

The polynomial kernel is given by

where c and d are parameters. It allows the model to capture interactions between features
up to a specified degree. Lower-degree polynomials capture simple interactions, while higher
degrees allow more complex decision boundaries, at the cost of higher risk of overfitting.
Typical values of the parameters are d = 2 or d = 3, corresponding to quadratic or cubic
decision boundaries that capture moderate nonlinearity without overfitting. The constant c is
usually set to 0 or 1, with c = 1 being a common default to ensure that the kernel output
remains positive even when the dot product between inputs is small or negative. Higher
degrees or larger c values are rarely used, as they tend to increase model complexity and the
risk of overfitting, especially with limited data.

To better understand what this kernel does, it's useful to look at the explicit feature mapping
that corresponds to the kernel. Although the main appeal of the kernel trick is that we avoid
working directly in the high-dimensional feature space, exploring this space can help build
intuition about how the kernel transforms the data. Consider the case where inputs are two-
dimensional vectors, x = (x1,x2), and we use a degree-2 polynomial kernel with c = 1:

Expanding this expression gives:

This corresponds exactly to the dot product in a six-dimensional space with the following
feature map:

The 2 coefficients are included to ensure that inner products between transformed vectors
match the kernel expansion exactly, preserving distances and angles. The feature map
contains all monomials of degree up to 2, including cross-terms and linear terms, which
explains how the polynomial kernel captures feature interactions. While this mapping is
tractable for small inputs and low-degree kernels, it becomes infeasible to compute explicitly

K(x,x′) = (x⊤x′ + c)d,

K(x, z) = (x⊤z + 1)2.

(x1z1 + x2z2 + 1)2 = x1
2z1

2 + 2x1x2z1z2 + x2
2z2

2 + 2x1z1 + 2x2z2 + 1.

ϕ(x1,x2) = (x1
2, 2x1x2,x2

2, 2x1, 2x2, 1) .

in higher dimensions—hence the power of the kernel trick, which allows us to work with such
feature spaces implicitly.

The radial basis function (RBF) kernel, also called the Gaussian kernel, is given by

where γ > 0 controls the width of the Gaussian. The RBF kernel is extremely flexible and can
model very complex boundaries. It is often the default choice when there is no strong prior
knowledge about the structure of the data.

Here is an implementation of the RBF kernel, and an example of its decision boundaries and
margins on an example two-dimensional data:

def rbf_kernel(X1, X2=None, gamma=1.0):

if X2 is None:

X2 = X1

Compute pairwise squared distances

X1_sq = np.sum(X1**2, axis=1)

X2_sq = np.sum(X2**2, axis=1)

distances = X1_sq[:, np.newaxis] + X2_sq[np.newaxis, :] - 2 * np.dot(X1, X2.T)

return np.exp(-gamma * distances)

K(x,x′) = exp (−γ∥x − x′∥2) ,

The sigmoid kernel is given by

where α and c are parameters. It is inspired by the behavior of neurons in neural networks.
However, it is less commonly used than the linear, polynomial, or RBF kernels.

Why the RBF Kernel Is Infinite-Dimensional?
The RBF kernel has a special property: it implicitly maps data into an infinite-dimensional
feature space. We can see this by expanding the RBF kernel using a Taylor series. The
exponential function can be expanded as:

Substituting z = −γ∥x − x′∥2, we get:

K(x,x′) = tanh(αx⊤x′ + c),

exp(z) =
k=0

∑
∞

k!
zk

.

Each term in the expansion involves powers of the distance ∥x − x′∥2, which itself involves
terms like (xi − xi

′)2. Expanding these powers generates increasingly complex combinations
of the input features.

Thus, the RBF kernel corresponds to an implicit mapping where all polynomial interactions of
all degrees between the features are represented. The feature space is infinite-dimensional
because the Taylor series has infinitely many terms. This property makes the RBF kernel
extremely powerful: it can approximate very complex functions. However, it also increases the
risk of overfitting if the hyperparameter γ is not chosen carefully.

Kernels and Hilbert Spaces
When working with kernels, we are implicitly working in mathematical spaces called Hilbert
spaces. A Hilbert space is a complete, infinite-dimensional generalization of Euclidean space,
equipped with an inner product that satisfies certain properties. Kernels must be symmetric
and positive semi-definite to correspond to valid inner products in a Hilbert space. This
guarantees that the optimization problems remain convex and that the methods are
mathematically well-behaved.

Although we rarely need to work directly with Hilbert spaces when applying kernel methods,
understanding that kernels operate within such spaces helps explain their great flexibility and
theoretical foundations. It also clarifies why we can work with infinite-dimensional feature
mappings without computational problems: everything is handled through the kernel function.

What Makes a Function a Valid Kernel?
Not every function can be used as a kernel. For a function K(x,x′) to serve as a kernel, it
must behave like a dot product in some (possibly high-dimensional) feature space. This
ensures that all the mathematical properties that kernel methods rely on—especially the
convexity of the optimization problem—are preserved.

Two key properties must hold for a function to be a valid kernel. First, the kernel must be
symmetric, meaning

exp (−γ∥x − x′∥2) =
k=0

∑
∞

k!
(−γ∥x − x′∥2)k

.

for all inputs x and x′. This reflects the fact that the dot product is symmetric: the similarity
between x and x′ should be the same as the similarity between x′ and x.

Second, the kernel must be positive semi-definite (PSD). This means that for any finite set of
data points {x1, … ,xn}, the corresponding Gram matrix K defined by Kij = K(xi,xj)
must satisfy:

for all vectors c ∈ Rn. Positive semi-definiteness ensures that the optimization problem
remains convex and that the SVM (or any other kernel method) has a unique, well-behaved
solution.

These conditions are not merely technical. In practice, they guarantee that the kernel actually
corresponds to an inner product in some feature space, even if we never compute that space
explicitly. Without these properties, the optimization problem could be ill-posed, lead to
unpredictable behavior, or fail entirely.

When building kernel-based models, it is important to use known valid kernels, such as the
linear, polynomial, RBF, or sigmoid kernels, whose mathematical properties have been
established. If you define a new kernel, you must ensure that it satisfies symmetry and
positive semi-definiteness. One practical approach is to compute the Gram matrix on a few
random datasets and check if it is always PSD (for example, by checking if all eigenvalues are
non-negative).

Fortunately, there are simple rules for constructing new kernels. If K1 and K2 are valid
kernels, then so are:

• aK1 + bK2 for any a, b ≥ 0,
• K1 ⋅ K2 (elementwise product),
• compositions such as f(K1(x,x′)) where f is a function preserving PSD.

These rules make it easy to build complex kernels by combining simpler ones, providing great
flexibility while preserving the mathematical guarantees that kernel methods rely on.

K(x,x′) = K(x′,x)

i,j

∑ cicjK(xi,xj) ≥ 0

Kernel Ridge Regression
In the previous chapter, we have seen how kernels allow us to replace dot products with
more flexible measures of similarity, enabling linear algorithms to operate in rich, often infinite-
dimensional feature spaces. In this section, we extend another classic linear model—ridge
regression—into the kernelized setting. Ridge regression is one of the simplest and most
widely used techniques for fitting a function to data while controlling overfitting through
regularization. Kernel ridge regression combines the strengths of ridge regression with the
flexibility of kernels, resulting in a powerful tool that can model highly nonlinear patterns while
remaining mathematically elegant and computationally tractable.

Let us first briefly recall the idea of standard ridge regression. Suppose we are given training
data (xi, yi) for i = 1, … ,n, where xi ∈ Rd and yi ∈ R. In linear regression, we seek a
weight vector w ∈ Rd such that the predicted value ŷi = w⊤xi is as close as possible to the
true target yi. The simplest approach minimizes the sum of squared errors:

However, when the number of features is large compared to the number of data points, or
when the features are highly correlated, this least squares problem can lead to overfitting or
unstable solutions. Ridge regression addresses this by adding a penalty on the size of the
weight vector, leading to the optimization problem:

where λ > 0 is a regularization parameter that controls the trade-off between fitting the data
and keeping w small. The closed-form solution for w is well known and given by:

where X is the n × d matrix whose rows are the xi
⊤, and y is the vector of targets.

While ridge regression is effective when the relationship between x and y is close to linear, it
struggles with complex, nonlinear patterns. To address this, we could try to manually design
nonlinear features, but a far more systematic approach is to use kernels. Instead of fitting a

w
min

i=1

∑
n

(yi − w⊤xi)2.

w
min

i=1

∑
n

(yi − w⊤xi)2 + λ∥w∥2,

w = (X⊤X + λI)−1X⊤y,

linear model in the original input space, we will fit a linear model in a high-dimensional feature
space where the inputs have been transformed via a (possibly implicit) mapping ϕ(x).

In the kernelized setting, we no longer seek a weight vector w directly. Instead, by the
Representer Theorem, we know that the solution can be expressed as a linear combination of
the training examples mapped into feature space:

where αi are coefficients to be determined. Thus, the predicted output for a new point x
becomes:

where K(xi,x) is the kernel function that computes the inner product between ϕ(xi) and
ϕ(x). Thus, even though the feature space might be infinite-dimensional, the solution
depends only on the finite set of training points, and all computations can be carried out via
the kernel function without explicitly constructing the feature mapping.

Our goal is now to determine the coefficients α = (α1, … ,αn)⊤. To find them, we
substitute this form into the ridge regression objective. The empirical error term becomes:

The regularization term, originally ∥w∥2, now becomes:

Thus, the kernel ridge regression objective is:

This expression can be written more compactly in matrix notation. Let K denote the n × n

w =
i=1

∑
n

αiϕ(xi),

f(x) = w⊤ϕ(x) =
i=1

∑
n

αi⟨ϕ(xi),ϕ(x)⟩ =
i=1

∑
n

αiK(xi,x),

i=1

∑
n

(yi − f(xi))2 =
i=1

∑
n (yi −

j=1

∑
n

αjK(xj ,xi))
2

.

∥w∥2 =
i=1

∑
n

αiϕ(xi)

2

=
i,j

∑αiαj⟨ϕ(xi),ϕ(xj)⟩ =
i,j

∑αiαjK(xi,xj).

α
min

i=1

∑
n (yi −

j=1

∑
n

αjK(xj ,xi))
2

+ λ

i,j

∑αiαjK(xi,xj).

Gram matrix with entries Kij = K(xi,xj). Let y and α be the column vectors of the targets
and coefficients, respectively. Then, the objective becomes:

Expanding the terms, we have:

and thus the full objective is:

To minimize with respect to α, we take the derivative and set it to zero:

which simplifies to:

Multiplying both sides by K−1 (assuming K is invertible or adding a small regularization if
necessary), we obtain:

and thus the closed-form solution:

This remarkably simple formula shows that, once we have the Gram matrix K , solving for α
requires only solving a linear system, exactly as in standard ridge regression but operating in
the space of kernels. Once α is found, predictions on a new point x are made by evaluating:

Kernel ridge regression thus provides a flexible and efficient way to fit nonlinear functions. It
retains the computational simplicity of linear models—closed-form solution, no iterative
optimization needed—while being capable of modeling highly complex relationships thanks to
the choice of the kernel.

α
min(y − Kα)⊤(y − Kα) + λα⊤Kα.

(y − Kα)⊤(y − Kα) = y⊤y − 2α⊤Ky + α⊤K⊤Kα,

y⊤y − 2α⊤Ky + α⊤(K2 + λK)α.

−2Ky + 2(K2 + λK)α = 0,

(K2 + λK)α = Ky.

(K + λI)α = y,

α = (K + λI)−1y.

f(x) =
i=1

∑
n

αiK(xi,x).

To illustrate the utility of kernel ridge regression, consider the following data set:

np.random.seed(0)

X = np.linspace(-3, 3, 30)[:, None]

y = np.sin(X).ravel() + 0.1 * np.random.randn(30)

Obviously, the relation between input feature and a class is non-linear. We will use a Gaussian
(RBF) kernel that we have already defined in the previous chapter, compute the Gram matrix,
and solve for alpha :

K = rbf_kernel(X, X, gamma=1.0)

lmbda = 0.1 # regularization strength

n = K.shape[0]

alpha = np.linalg.solve(K + lmbda * np.eye(n), y)

To plot a result we can create linearly-spaced input points and compute predictions:

X_test = np.linspace(-4, 4, 200)[:, None]

K_test = rbf_kernel(X_test, X)

y_pred = np.dot(K_test, alpha)

Figure: Data modelling with kernel ridge regression, where we have used a RBF kernel.

Changing a kernel to polynomial, third-degree kernel, yields a smoother solution:

def polynomial_kernel(X1, X2, degree=3, coef0=1):

Polynomial kernel

return (np.dot(X1, X2.T) + coef0) ** degree

Figure: Data modelling with kernel ridge regression, where we have used a 3-rd degree
polynomial kernel.

Kernel Logistic Regression
We can also kernalize logistic regression. Kernalizing this model may have benefits compared
to SVM, as logistic regression nicely models class probabilities and does not focus only on
crisp classification. Standard logistic regression models class probability as:

where w is a weight vector and x is the input. Instead of expressing w directly, we express it
as a linear combination of training instances:

P (y = 1 ∣ x) = σ(w⊤x + b)

where αi are coefficients, and xi are the training examples.

Substituting into the original logistic regression formula:

Thus, the model becomes:

Finally, to kernelize, we replace each inner product xi
⊤x with a kernel function K(xi, x),

giving:

Here is the code for kernalized logistic regression. We first define the data, introduce a kernel
(we opted for a Gaussian kernel) and compute the Gram matrix:

X, y = make_moons(n_samples=200, noise=0.3, random_state=42)

def rbf_kernel(X1, X2, gamma=0.5):

dists = np.sum(X1**2, axis=1)[:, None] + np.sum(X2**2, axis=1)[None, :] - 2 * X1 @ X2.T

return np.exp(-gamma * dists)

gamma = 0.5

K = rbf_kernel(X, X, gamma)

Next, we define the loss function for the logistic regression. The loss is based on the standard
log likelihood for logistic regression, that is, a cross-entropy loss:

w =
i=1

∑
n

αixi

w⊤x = (
i=1

∑
n

αixi)
⊤

x =
i=1

∑
n

αixi
⊤x

P (y = 1 ∣ x) = σ(
i=1

∑
n

αixi
⊤x + b)

P (y = 1 ∣ x) = σ(
i=1

∑
n

αiK(xi, x) + b)

def sigmoid(z):

return 1 / (1 + np.exp(-z))

def logistic_loss(alpha):

pred = sigmoid(K @ alpha)

return -np.mean(y * np.log(pred + 1e-15) + (1 - y) * np.log(1 - pred + 1e-15))

Optimization step is next:

result = minimize(logistic_loss, np.zeros(X.shape[0]), method='L-BFGS-B')

alpha = result.x

The result is depicted in the following graph.

Figure: Kernelized logistic regression, showing the decision boundary and probability
contours for the target class (in red).

Kernel approximation techniques
Kernel methods enable learning complex relationships without explicit feature
transformations, but they often suffer from high computational costs. Computing and storing
the full n × n kernel matrix becomes expensive for large datasets. To address this, several
kernel approximation techniques have been developed that make kernel methods scalable.
Two widely used techniques are the Nyström method and Random Fourier Features.

The Nyström method approximates the full kernel matrix by sampling a small subset of the
data points. Suppose we select m representative points (with m ≪ n). We compute two
smaller matrices: Kmm, the kernel matrix between the sampled points, and Knm, the kernel
matrix between all data points and the sampled points. Each entry of Kmm is given by

where xi and xj are sampled points, and each entry of Knm is given by

where xi is any data point and xj is a sampled point. The full kernel matrix Knn is then
approximated as

This reduces both storage and computation, enabling approximate kernel methods on much
larger datasets.

Random Fourier Features approximate shift-invariant kernels, such as the RBF kernel, by
mapping inputs into a randomized finite-dimensional feature space where inner products
approximate the kernel. By Bochner’s theorem, a shift-invariant kernel can be expressed as
the Fourier transform of a probability distribution. To construct random features, we sample
random frequencies ω from the Fourier transform of the kernel and define random features

where b is sampled uniformly from [0, 2π]. Instead of computing K(x, x′), we now compute

(Kmm)ij = K(xi, xj)

(Knm)ij = K(xi, xj)

Knn ≈ KnmKmm
−1 Knm

⊤

z(x) = 2 cos(ω⊤x + b)

K(x, x′) ≈ z(x)⊤z(x′)

This technique reduces the problem to a simple linear model in the new randomized feature
space.

Both the Nyström method and Random Fourier Features allow large-scale learning with kernel
methods by approximating the kernel matrix or embedding the data into a lower-dimensional
space. They make kernel-based algorithms practical for modern datasets without losing much
of the expressive power of kernels.

Kernel methods in text mining and bioinformatics
Kernel methods are highly flexible and can be adapted to domains where data are not
naturally represented as numerical vectors. In areas such as natural language processing
(NLP) and bioinformatics, kernel methods enable learning directly from structured objects like
strings, sequences, or trees.

In NLP, string kernels measure similarity between two text sequences without explicit feature
extraction. For example, the substring kernel counts the number of common subsequences
between two strings. Given two strings s and t, the kernel value is higher if they share many
common subsequences, weighted by their lengths and positions. This allows classifiers such
as SVMs to operate directly on text, enabling tasks like text classification, document
categorization, and named entity recognition without the need for explicit vectorization.

In bioinformatics, kernel methods are used to compare biological sequences such as DNA,
RNA, or proteins. A common example is the spectrum kernel, which represents sequences by
their counts of all possible k-mers (substrings of length k). The spectrum kernel between two
sequences s and t is defined as

where Φk(s) is a feature vector counting the occurrences of each possible k-mer in
sequence s. More advanced kernels, such as mismatch kernels and gapped substring
kernels, allow for small mutations, making them well-suited to biological data where
sequences may not match exactly.

In both NLP and bioinformatics, kernel methods leverage domain-specific similarity functions
to apply powerful machine learning techniques directly to structured or discrete data without
requiring manual feature engineering.

K(s, t) = ⟨Φk(s), Φk(t)⟩

Conclusion
Kernel methods offer a powerful way to model nonlinear relationships by implicitly mapping
data into high-dimensional spaces where linear algorithms can operate more effectively. Their
main advantage lies in enabling complex decision boundaries without explicitly computing the
transformation, thanks to the kernel trick. These techniques have been foundational in the
development of support vector machines and other classical machine learning models,
offering strong theoretical guarantees and robust performance on small to medium-sized
datasets. However, they often struggle with scalability and representation learning compared
to modern deep neural networks. Today, while deep learning has largely eclipsed kernel
methods in popularity—especially in areas like computer vision and natural language
processing—kernels remain an important conceptual and mathematical tool, and continue to
find use in specialized applications and theoretical work.

	Kernel Methods
	Linear SVM: Primal Form
	Deriving the Dual Form
	Linear SVM and Quadratic Programming: An Example in Python
	Soft Margin Linear SVM
	Beyond Linearity in SVM: The Kernel Trick
	Why Calling It a Trick?
	Common Kernels
	Why the RBF Kernel Is Infinite-Dimensional?
	Kernels and Hilbert Spaces
	What Makes a Function a Valid Kernel?
	Kernel Ridge Regression
	Kernel Logistic Regression
	Kernel approximation techniques
	Kernel methods in text mining and bioinformatics

	Conclusion

