Data Maps

The title of this chapter is somewhat unusual—or rather, nonstandard. It should more properly
be titled "dimensionality reduction" or "projections and vector embeddings." But we’ll stick
with "maps." The aim of this chapter is to review several techniques that can represent
data—i.e., instances described in attribute space or instances for which distances can be
computed—as points in a scatterplot. That is, in two or, if truly necessary, three dimensions.
The conditions that such a visualization must meet will depend on the selected technique. In
one case, for example, we might want the points—that is, the instances—to be as spread out
as possible in the visualization. In another, we may require that the distances between
instances reflect as faithfully as possible their distances in the original space. In a third, we
might care only about preserving neighborhood relationships.

This chapter on data maps deliberately follows the chapter on clustering. These two
techniques are often used together. Most clustering methods are not designed for visualizing
data. Exceptions include hierarchical clustering and the related nearest-neighbor merging
approach. But all other techniques simply find clusters and do not know how to visualize
either the process or the results. With data maps, we aim to visually represent relationships
between data—that is, to find neighbors or show pairwise distances in 2D or 3D. We can then
overlay, for example using colors, the clustering results. If the results are consistent—i.e.,
instances from the same cluster also appear grouped in the data map —that confirms that the
discovered clusters are real and can be meaningfully presented via visualization.

Data maps also serve the purpose of explanation. Perhaps we shouldn’t even say "also" here,
since explanation is their primary purpose —we create data maps precisely so that we can
visually represent the data, reflect on them, and identify interesting regions of the map that
can be interpreted.

If the original data are given in attribute form, then mapping them means reducing the
dimensionality from m dimensions—that is, from feature space—to two or three dimensions.
In practice, as we write this on paper, we are concerned with two dimensions, as three
dimensions cannot be represented. The same applies to computer screens. While 3D
visualizations are possible on computers, they require interactive tools or specialized 3D
display equipment. Therefore, in this chapter, we will focus on two-dimensional maps,
although all techniques we present can also be used for 3D representations.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

One final note before the descriptions: with the exception of PCA, we do not explain how the
solutions are actually computed. For each method, we describe the objective function, but
since most of these (again, PCA is the exception) lack an analytical solution, we simply note
that a numerical one exists. This solution is based on gradient descent, an approach we will
explore further in upcoming chapters. In general, the techniques described in this and the
next chapter are based on defining an objective function, which we then pass—along with the
data—to a numerical optimization process that is essentially the same for all techniques.

Principal Component Analysis

The goal of Principal Component Analysis (PCA) is to find the most informative two-
dimensional representation of the data. We want to identify directions in feature space along
which the data are most spread out—in other words, where they have the greatest variance.
This reduces the dimensionality of the data from m (the number of features) to 2 (or 3), while
preserving as much information as possible.

Mathematically, PCA is a projection of the data from a higher-dimensional space into a lower-
dimensional space. Instead of retaining all original features, we find new axes (components)
that are linear combinations of the original features and project the data onto these new axes.
These axes are chosen to maximize the variance in the data.

Mathematical Derivation

1. Centering the Data

Let X be a data matrix of dimensions n X m, where n is the number of samples and m the
number of features. We assume the data are centered, meaning that for each feature:

1 n
—E Xi; =0, foreachj=1,2,...,m
n

i=1

If the data are not centered, we center them in advance.

2. Finding the First Component u;

We seek a vector u; (of size m X 1) that defines the first principal component—a direction in
feature space such that the variance of the data projected onto it is maximized. The projection

of the data matrix X onto u; is:
Z = Xu1

The variance of the projection z is:
1 1
Var(z) = — || Xu|)? = —uf XTXu,
n n

To maximize this variance, our objective function is:

max u; Su,
u

where S = %XTX is the covariance matrix of the data.
To prevent an unbounded solution, we constrain the length of u; to 1:
uful =1
3. Optimization and Solution
We solve this optimization problem using Lagrange multipliers. The Lagrangian function is:
L(up, A) = ul' Su; — A(ufu; — 1)
We find the stationary points:

L
8— = 2SU1 — 2)\111 =0
8111

Su1 =)\ul

This is the eigenvalue equation for the covariance matrix. Thus, u; is an eigenvector of .S,
and the corresponding eigenvalue \ satisfies:

Su1 =)\1111

4. Solution

The variance of the projection is:

1
Var(z) = EHXU1H2 = ulTSul

Using the eigenvalue equation:
Su; = \jug
we get:
uipSul = ulT)\lul = Al(uful) =)\
since we assumed uful = 1. Therefore:
Var(z) =)\

This means that the eigenvalue A\ is equal to the variance of the data in the direction of the
first principal component u;.

To maximize the projection variance, we select the eigenvector corresponding to the largest
eigenvalue \1. The variance in the direction u; equals this eigenvalue:

Var(z) = A\;

Scree Plot

PCA results are often visualized using a scree plot, which shows explained variances. The
-axis represents the principal components (1st, 2nd, 3rd, ...), and the y-axis shows the
proportion of variance each component explains. For each component k, the explained
variance is computed as the ratio between its eigenvalue A; and the sum of all eigenvalues:

L
Z;'n:l Aj

The scree plot provides a visual tool for deciding how many components to retain. Typically,

Explained Variance; =

we look for the “elbow” in the plot—the point where additional components contribute very
little extra explained variance.

Interpretation

The principal axes determined by PCA are represented as linear combinations of the original
features, meaning each component is a weighted sum of the original attributes. If u; is the
first principal component, then it can be written as:

u = (wl,wz,...,wm)T

where w; are the weights for each feature. The absolute value |w;| indicates how much each
attribute contributes to the component—the larger the weight, the greater the influence of that
feature.

When interpreting the weights, we must consider that the data have been normalized
beforehand —that is, each feature has a similar scale (e.g., mean 0 and standard deviation 1).
This is important because PCA otherwise favors features with greater numerical spread,
regardless of their actual informational value. Normalization ensures that contributions to
components reflect the structure of the data rather than differing measurement units or
ranges.

Alternative Numerical Solution

In practice, when we want to project the data into two dimensions, we only need the first two
principal components. There is no need to compute all m eigenvectors of the covariance
matrix, which would be computationally expensive for large m. Instead, we can use faster
procedures such as the power method and Gram-Schmidt orthogonalization.

The power method is a simple algorithm for finding the dominant eigenvector of a symmetric
matrix S, such as our covariance matrix. It works by repeatedly multiplying an arbitrary initial
vector by S and normalizing the result each time:

(®)
SR A A

ISv®|
This process is repeated until v(*) stabilizes. The result is the first eigenvector uy,
corresponding to the largest eigenvalue Aj.

To find the second eigenvector uy, which must be orthogonal to u;, we use Gram-Schmidt
orthogonalization to "clean" the next approximation:

1. Compute an approximation v for the next eigenvector (e.g., again using the power
method).
2. Subtract the projection onto uj:

VvV, =V — (vTul)ul

3. Normalize v | to get u».

Computing all m eigenvectors and eigenvalues requires O(m3) time, as it involves solving
the general eigenvalue problem. But if we only need the first two components, we can use the
power method and Gram-Schmidt to obtain the desired results in O(mz) time, since we only
multiply a matrix by a vector. This is significantly faster, especially for high-dimensional data
where m is large.

This approach enables efficient computation of the two principal axes needed to prepare a
two-dimensional projection of the data for visualization.

Multidimensional Scaling

Multidimensional Scaling (MDS) is a method that finds a low-dimensional representation of
data (typically in two or three dimensions) such that the distances between points are as close
as possible to the original distances between instances in the high-dimensional space. The
purpose of MDS is thus to visualize data by preserving the distances between instances. The
input to MDS is the matrix of pairwise distances between data points; the method does not
require an attribute-based representation. It operates directly on distances, not features.

The objective function that MDS minimizes is the sum of squared differences between the
original and the newly computed distances:

. 2
zﬁlgnz (dij — llzs — 2;1))

1<J

where d;; is the given distance between instances 4 and j, and ||z; — z;|| is the distance
between them in the new low-dimensional representation.

Solving this problem—embedding the points in a new low-dimensional space—is done via
numerical optimization, as the problem is nonlinear and lacks an analytical solution. This is
unlike PCA, which does admit an analytical solution. The process of finding the MDS solution
typically follows these steps:

1. Initialize the points z1, . . . , Z,, for example randomly in a plane. In practice, initialization
is often based on the projection obtained from PCA.

2. lteratively improve the configuration by moving the points z; in directions that decrease
the objective function. This is done using gradient descent or other optimization

algorithms such as iterative majorization (e.g., the SMACOF algorithm).

3. For gradient descent, compute the gradient of the objective function with respect to
each coordinate z;. This means finding the direction to move each point to reduce the
error.

4. Repeat until the objective function stabilizes—that is, until convergence is reached.

MDS can be computationally expensive because the number of point pairs grows
quadratically with n—there are n(n — 1) /2 pairs to consider, which becomes very large for
big datasets. Because of this, faster or approximate algorithms have been developed that
consider only a subset of distances (e.g., distances to nearest neighbors) or use optimization
shortcuts such as stochastic gradient descent, which updates only a random subset of points
in each iteration. One of the well-known accelerated variants is the SMACOF method (Scaling
by Majorizing a Complicated Function), which solves an approximation of the original problem
in each step and converges faster.

It is important to note that MDS is not a projection, because the new coordinates are not
linear combinations of the original features; rather, it is an embedding into a new vector
space. The new dimensions have no intrinsic meaning—they exist only to help preserve
distances. Furthermore, the solution is invariant to rotation, reflection, and translation: if all
points are rotated or shifted, the result is still valid, since the distances remain the same.

The key difference between embedding and projection is that in projection (like PCA), the new
axes are combinations of existing features and sometimes interpretable, whereas in
embedding (like MDS), the axes are defined solely for the purpose of preserving pairwise
distances and have no inherent meaning.

One drawback of MDS is that it attempts to preserve all distances between point pairs, which
can lead to overemphasizing large distances at the expense of preserving local structure. This
often makes MDS less effective at revealing local clusters and neighborhoods.

Example: Suppose we have two points that are very close together in the original space, with
a distance of 1, and two other points that are very far apart, with a distance of 100. If the
embedding distorts all distances by 10%, the close distance becomes 1.1, while the large
distance becomes 110. Although the relative error is the same, the absolute error is much
larger for the distant pair (10 units vs. 0.1). Consequently, MDS will prioritize correcting larger
absolute errors at the cost of precision in small distances—even though the small distances
are often more important for understanding local structure.

Neighborhood Preservation (t-SNE)

The t-SNE method (t-distributed Stochastic Neighbor Embedding) is designed to find a good
data representation in which similar data points are located close together, and dissimilar
ones are placed far apart. The key idea behind t-SNE is to focus on preserving the /local
structure of the data—ensuring that neighboring points in high-dimensional space remain
neighbors in the two-dimensional visualization.

t-SNE first computes how likely each pair of data points is to be neighbors in the original
space. Then, it arranges the points in a low-dimensional space so that these neighbor
probabilities are as similar as possible. Unlike methods that preserve distances (such as
MDS), t-SNE preserves neighborhoods, making it particularly useful for identifying clusters
and local patterns in the data.

Mathematically, t-SNE defines for each pair of points 2 and 7 a probability p;; that reflects
how close the points are in the original space. This probability is computed using a Gaussian
distribution:

exp(—|jx; — x;*/207)

p. . —
I S exp(—[x; — xi[|2/207)
_ Djli T Dy
i o,

The parameter o; controls how far the neighborhood extends around point x;. A larger o;
means more distant points are treated as neighbors; a smaller o; limits the neighborhood to
closer points. To adjust o; for each point appropriately, a global parameter called perplexity is
used, which specifies the expected number of neighbors. The algorithm then tunes each o;
so that the number of effective neighbors matches the chosen perplexity. Perplexity thus
balances local and global structure: smaller values highlight fine-grained clusters, while larger
ones capture broader structure.

In the low-dimensional space, where we have points z1, . . . , Z,, a similar probability g;; is
defined, reflecting how close the points are in 2D. Instead of a Gaussian, t-SNE uses a
Student t-distribution with one degree of freedom (i.e., the Cauchy distribution), which allows
for larger distances and thus more natural spacing of distant points:

N 8]
LD S PR D

The main optimization goal is to minimize the difference between the probabilities p;; and g;;.

This difference is measured using the Kullback-Leibler (KL) divergence:

. Dij

KL(P|Q) = i log =L

,min KL(P|Q) =) _pilog °

The objective function measures how far the neighborhood structure in 2D deviates from that
in the original space. The smaller this difference, the better the match between the 2D and
high-dimensional neighborhood structures.

The solution is found via iterative numerical optimization, typically using gradient descent. In
each iteration, the gradient of the objective function with respect to the coordinates z; is
computed, and the coordinates are adjusted to reduce the objective. Due to the nature of the
objective and the large number of point pairs, t-SNE is computationally demanding and
relatively slow, especially on large datasets. To address this, faster variants such as Barnes-
Hut t-SNE and stochastic optimization methods have been developed.

It is important to understand that t-SNE is not a projection but an embedding into a new
vector space. The new dimensions do not represent any linear combinations of original
features and have no intrinsic meaning. t-SNE finds a placement of points that best preserves
the neighborhood structure of the original data. Like with MDS, the result is invariant under
rotation, reflection, and translation.

When using t-SNE, it is essential to interpret the layout in terms of neighborhoods. That is, we
should focus on which points are close to one another—because t-SNE primarily preserves
local relationships. The distances between more distant clusters should not be interpreted
literally: two clusters that appear far apart in the embedding may actually be close (or even
further apart) in the original space. Therefore, the output of t-SNE should be interpreted by
examining the internal structure of clusters and their local neighborhoods, not by comparing
the distances between clusters.

Data Embedding Based on Manifolds and Graphs
(UMAP)

The UMAP method (Uniform Manifold Approximation and Projection) is based on manifold
theory and graph theory and aims to find a data representation that preserves both local
characteristics (neighborhoods) and aspects of global structure, such as inter-cluster
distances. Compared to t-SNE, UMAP is often less sensitive to parameter settings and better
at maintaining the overall structure of the data.

The core idea of the method is to first build a neighborhood graph in high-dimensional space
that captures local relationships between data points, and then find a low-dimensional layout
that preserves those neighborhood connections.

Mathematically, UMAP first defines probabilities p;; that quantify how strongly point jis
connected to point 2 in the high-dimensional space. These probabilities are computed using
distances and the following function:

oF)

dXi,X' — Pi
pij:eXp(— (i, ;) p)

where d(x;,X;) is the distance between points ¢ and j, p; is the distance to the nearest
neighbor (to ensure local adaptation), and ¢; is the neighborhood radius, which is chosen so
that the average number of neighbors matches a target perplexity. In the low-dimensional
space (e.g., 2D), UMAP defines similar probabilities g;;, describing relationships between
points in the new layout:

1
~ 1+alz — 2z

qij
where a and b are parameters that define the shape of the curve and are selected to best

model the distribution of distances.

The objective function UMAP minimizes is similar to Kullback-Leibler divergence but is based
on binary cross-entropy between the probabilities p;; and g;;:

C = Z [pijlog qi; + (1 — pij) log(1 — gj)]
i#]

This function guides UMAP to find a configuration in which points connected in the high-
dimensional graph are placed close together in the low-dimensional space, while
disconnected pairs are placed far apart. As in t-SNE, the optimization is performed using
gradient descent (described in more detail in the following chapters), where coordinates in the
low-dimensional space are iteratively adjusted to minimize the cost.

UMARP is therefore a fast and effective method for embedding data into a low-dimensional
space while preserving both local and, to some extent, global structure. This makes it
especially suitable for visualizing large and complex datasets.

Autoencoders

Autoencoders are neural network models designed for unsupervised dimensionality reduction.
Unlike methods such as PCA that perform linear projection, autoencoders can learn nonlinear
mappings, enabling them to capture complex structures in data. An autoencoder consists of
two parts: an encoder, which compresses the input data into a lower-dimensional
representation (the "bottleneck"), and a decoder, which reconstructs the original data from
this compressed form.

The key idea is that, by training the network to minimize the difference between the original
input and its reconstruction, the encoder must learn a compact internal representation that
preserves essential information. This internal representation can then be used as a low-
dimensional embedding for visualization, clustering, or as input to other models.

Formally, given input data $\mathbf{x} \in \mathbb{R}*m$, the encoder maps \mathbf{x} to
a latent representation $\mathbf{z} \in \mathbb{R}*d$ where $d < m$, via a function
f_θ, typically a neural network. The decoder, a function g_ϕ, reconstructs the
input as $\hat{\mathbf{x}} = g_\phi(f_\theta(\mathbf{x}))$. The model is trained to minimize the
reconstruction loss:

n
Igl’i(ﬁnz 1% — |
=1

Because the encoder-decoder pair is flexible and can model nonlinear transformations,
autoencoders are particularly useful when linear techniques such as PCA fail to preserve
important relationships in the data. Once trained, the encoder alone can be used to produce a

2D or 3D embedding suitable for visualization —just like other methods discussed in this
chapter.

Variants such as variational autoencoders (VAEs) impose additional structure on the latent
space, often with the goal of making the space more continuous or interpretable. However, for
the purposes of data maps and visual embeddings, even standard autoencoders often
perform well, particularly when combined with nonlinear activation functions and
regularization techniques to prevent overfitting.

Interpreting Data Maps

Aside from a brief mention in the section on principal component analysis, we haven’t yet
addressed the topic of interpreting data maps—despite the fact that interpretation is the
primary reason for constructing them in the first place. While we wait for the authors of these
notes to enrich this chapter with examples (including those discussed in lectures), we can
note here that interpreting data maps is similar to interpreting clusters, as described in the
previous chapter: we select a group of points and identify which features and feature values
are characteristic of the group and distinguish it from the rest of the data.

Ideally, such groups and their interpretations would be automatically identified by algorithms
that summarize their findings—perhaps with the help of large language models. However,
software that performs this kind of automatic interpretation reliably is still (mostly) nonexistent,
leaving ample opportunity for future development in this area.

	Data Maps
	Principal Component Analysis
	Mathematical Derivation
	1. Centering the Data
	2. Finding the First Component u1\mathbf{u}_1u1
	3. Optimization and Solution
	4. Solution

	Scree Plot
	Interpretation
	Alternative Numerical Solution

	Multidimensional Scaling
	Neighborhood Preservation (t-SNE)
	Data Embedding Based on Manifolds and Graphs (UMAP)
	Autoencoders
	Interpreting Data Maps

