
Kernel Methods – Algorithms and
Applications
In the previous chapter, we introduced support vector machines (SVMs) and the idea of
kernels, which let us compute inner products in high-dimensional feature spaces without
explicitly transforming the data. We saw how this kernel trick enables SVMs to find nonlinear
decision boundaries by replacing dot products with kernel functions, leading to powerful yet
efficient models.

In this chapter, we move beyond the foundations. We explore how other algorithms—such as
ridge regression and principal component analysis—can also be kernelized, opening new
possibilities for regression, dimensionality reduction, and clustering. Along the way, we
discuss how to choose and combine kernels, approximate them for scalability, and apply
kernel methods to real-world problems. Our goal is to show how the simple idea of a kernel
can lead to an entire family of flexible and practical machine learning tools.

Kernel Ridge Regression
In the previous chapter, we have seen how kernels allow us to replace dot products with more
flexible measures of similarity, enabling linear algorithms to operate in rich, often infinite-
dimensional feature spaces. In this section, we extend another classic linear model—ridge
regression—into the kernelized setting. Ridge regression is one of the simplest and most
widely used techniques for fitting a function to data while controlling overfitting through
regularization. Kernel ridge regression combines the strengths of ridge regression with the
flexibility of kernels, resulting in a powerful tool that can model highly nonlinear patterns while
remaining mathematically elegant and computationally tractable.

Let us first briefly recall the idea of standard ridge regression. Suppose we are given training
data (xi, yi) for i = 1, … , n, where xi ∈ Rd and yi ∈ R. In linear regression, we seek a
weight vector w ∈ Rd such that the predicted value ŷi = w⊤xi is as close as possible to the
true target yi. The simplest approach minimizes the sum of squared errors:

w
min

i=1

∑
n

(yi − w⊤xi)2.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

However, when the number of features is large compared to the number of data points, or
when the features are highly correlated, this least squares problem can lead to overfitting or
unstable solutions. Ridge regression addresses this by adding a penalty on the size of the
weight vector, leading to the optimization problem:

where λ > 0 is a regularization parameter that controls the trade-off between fitting the data
and keeping w small. The closed-form solution for w is well known and given by:

where X is the n × d matrix whose rows are the xi
⊤, and y is the vector of targets.

While ridge regression is effective when the relationship between x and y is close to linear, it
struggles with complex, nonlinear patterns. To address this, we could try to manually design
nonlinear features, but a far more systematic approach is to use kernels. Instead of fitting a
linear model in the original input space, we will fit a linear model in a high-dimensional feature
space where the inputs have been transformed via a (possibly implicit) mapping ϕ(x).

In the kernelized setting, we no longer seek a weight vector w directly. Instead, by the
Representer Theorem, we know that the solution can be expressed as a linear combination of
the training examples mapped into feature space:

where αi are coefficients to be determined. Thus, the predicted output for a new point x

becomes:

where K(xi, x) is the kernel function that computes the inner product between ϕ(xi) and
ϕ(x). Thus, even though the feature space might be infinite-dimensional, the solution
depends only on the finite set of training points, and all computations can be carried out via
the kernel function without explicitly constructing the feature mapping.

w
min

i=1

∑
n

(yi − w⊤xi)2 + λ∥w∥2,

w = (X⊤X + λI)−1X⊤y,

w =
i=1

∑
n

αiϕ(xi),

f(x) = w⊤ϕ(x) =
i=1

∑
n

αi⟨ϕ(xi), ϕ(x)⟩ =
i=1

∑
n

αiK(xi, x),

Our goal is now to determine the coefficients α = (α1, … , αn)⊤. To find them, we
substitute this form into the ridge regression objective. The empirical error term becomes:

The regularization term, originally ∥w∥2, now becomes:

Thus, the kernel ridge regression objective is:

This expression can be written more compactly in matrix notation. Let K denote the n × n

Gram matrix with entries Kij = K(xi, xj). Let y and α be the column vectors of the targets
and coefficients, respectively. Then, the objective becomes:

Expanding the terms, we have:

and thus the full objective is:

To minimize with respect to α, we take the derivative and set it to zero:

which simplifies to:

Multiplying both sides by K−1 (assuming K is invertible or adding a small regularization if

i=1

∑
n

(yi − f(xi))2 =
i=1

∑
n (yi −

j=1

∑
n

αjK(xj , xi))
2

.

∥w∥2 =
i=1

∑
n

αiϕ(xi)

2

=
i,j

∑ αiαj⟨ϕ(xi), ϕ(xj)⟩ =
i,j

∑ αiαjK(xi, xj).

α
min

i=1

∑
n (yi −

j=1

∑
n

αjK(xj , xi))
2

+ λ

i,j

∑ αiαjK(xi, xj).

α
min(y − Kα)⊤(y − Kα) + λα⊤Kα.

(y − Kα)⊤(y − Kα) = y⊤y − 2α⊤Ky + α⊤K⊤Kα,

y⊤y − 2α⊤Ky + α⊤(K2 + λK)α.

−2Ky + 2(K2 + λK)α = 0,

(K2 + λK)α = Ky.

necessary), we obtain:

and thus the closed-form solution:

This remarkably simple formula shows that, once we have the Gram matrix K , solving for α

requires only solving a linear system, exactly as in standard ridge regression but operating in
the space of kernels. Once α is found, predictions on a new point x are made by evaluating:

Kernel ridge regression thus provides a flexible and efficient way to fit nonlinear functions. It
retains the computational simplicity of linear models—closed-form solution, no iterative
optimization needed—while being capable of modeling highly complex relationships thanks to
the choice of the kernel.

To illustrate the utility of kernel ridge regression, consider the following data set:

np.random.seed(0)
X = np.linspace(-3, 3, 30)[:, None]
y = np.sin(X).ravel() + 0.1 * np.random.randn(30)

Obviously, the relation between input feature and a class is non-linear. We will use a Gaussian
(RBF) kernel that we have already defined in the previous chapter, compute the Gram matrix,
and solve for alpha :

K = rbf_kernel(X, X, gamma=1.0)
lmbda = 0.1 # regularization strength
n = K.shape[0]
alpha = np.linalg.solve(K + lmbda * np.eye(n), y)

To plot a result we can create linearly-spaced input points and compute predictions:

(K + λI)α = y,

α = (K + λI)−1y.

f(x) =
i=1

∑
n

αiK(xi, x).

X_test = np.linspace(-4, 4, 200)[:, None]
K_test = rbf_kernel(X_test, X)
y_pred = np.dot(K_test, alpha)

Figure: Data modelling with kernel ridge regression, where we have used a RBF kernel.

Changing a kernel to polynomial, third-degree kernel, yields a smoother solution:

def polynomial_kernel(X1, X2, degree=3, coef0=1):
Polynomial kernel
return (np.dot(X1, X2.T) + coef0) ** degree

Figure: Data modelling with kernel ridge regression, where we have used a 3-rd degree
polynomial kernel.

Kernel Principal Component Analysis
Principal Component Analysis (PCA) is one of the most fundamental techniques in machine
learning and data analysis. In its classical form, PCA seeks directions in the data that
maximize variance. By projecting the data onto these directions, we can reduce its
dimensionality while preserving as much of the original structure as possible. However, linear
PCA assumes that the important patterns in the data can be captured by linear relationships.
This assumption often fails when the data has a complex, non-linear structure. Imagine, for
example, points distributed along a twisted "Swiss roll" in three dimensions: no straight line
can fully capture the variations inherent in the data. In such cases, linear PCA can only offer a
poor approximation.

Kernel PCA extends the ideas of PCA to non-linear structures by using the kernel trick.
Instead of working directly with the original data, we implicitly map the data points into a high-
dimensional feature space using a non-linear mapping ϕ(x). In this feature space, the
complex structure of the data may become simple and linear, allowing standard PCA
techniques to uncover meaningful patterns. Crucially, we never need to compute ϕ(x)

explicitly. By using a kernel function that calculates inner products in the feature space, we
perform all necessary computations efficiently without ever leaving the original input space.

To understand how Kernel PCA works, let us briefly revisit the core steps of linear PCA. Given
a data matrix X with n samples, each a vector in Rd, PCA computes the covariance matrix
Σ =

n
1 X⊤X and finds its eigenvectors and eigenvalues. The eigenvectors corresponding to

the largest eigenvalues define the principal components: the directions of maximum variance.
To project a new point onto these directions, we simply take dot products with the principal
eigenvectors.

In Kernel PCA, the idea is the same, but performed in feature space. We want to find
directions v in feature space that maximize the variance of the data after projection. Since the
feature space might be very high-dimensional, or even infinite-dimensional, we avoid working
with vectors like v directly. Instead, we seek solutions that can be expressed as linear
combinations of the mapped data points, v = ∑i=1

n
αiϕ(xi), a fact guaranteed by the

Representer Theorem. The optimization problem then reduces to finding the coefficients αi

that solve a certain eigenvalue problem involving the kernel matrix.

Mathematically, we begin by forming the kernel matrix K , where each entry is Kij =
K(xi, xj). This entry represents the inner product between the mapped points ϕ(xi) and
ϕ(xj) in the feature space: K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩. Even though we never compute
ϕ(x) explicitly, the kernel matrix K gives us all the information we need to work with the data
in the higher-dimensional space. However, before we can perform principal component
analysis, we need to make sure that the data is centered in the feature space — that is, that
the mean of the mapped data points is zero. This requirement is inherited from standard PCA,
where variance is always measured with respect to the mean.

In linear PCA, centering the data is easy: we simply subtract the mean vector from each data
point. In kernel PCA, we cannot directly subtract means because we do not have access to
the mapped points ϕ(xi). Instead, we must adjust the kernel matrix itself to behave as if the
data were centered.

To understand how centering affects the kernel matrix, suppose that the mean of the mapped
data is:

ϕ̄ =
n

1

i=1

∑
n

ϕ(xi).

The centered version of ϕ(xi) is:

The inner product between two centered points ϕ(xi) − ϕ̄ and ϕ(xj) − ϕ̄ is then:

Expanding this expression using basic properties of the inner product gives:

Each of these terms can be expressed in terms of the original kernel function. The first term
⟨ϕ(xi), ϕ(xj)⟩ is simply K(xi, xj). The second term ⟨ϕ(xi), ϕ̄⟩ is the average of
⟨ϕ(xi), ϕ(xk)⟩ over all k, which is:

Similarly, the third term ⟨ϕ̄, ϕ(xj)⟩ is:

and the last term ⟨ϕ̄, ϕ̄⟩ is the average of all pairwise kernel evaluations:

Putting all this together, the centered kernel matrix K
~

has entries:

This formula can be compactly written in matrix form:

where 1n is the n × n matrix with all entries equal to
n
1 .

This compact form efficiently computes the centered kernel matrix without explicit loops over

ϕ(xi) − ϕ̄.

⟨ϕ(xi) − ϕ̄, ϕ(xj) − ϕ̄⟩.

⟨ϕ(xi), ϕ(xj)⟩ − ⟨ϕ(xi), ϕ̄⟩ − ⟨ϕ̄, ϕ(xj)⟩ + ⟨ϕ̄, ϕ̄⟩.

⟨ϕ(xi), ϕ̄⟩ =
n

1

k=1

∑
n

⟨ϕ(xi), ϕ(xk)⟩ =
n

1

k=1

∑
n

K(xi, xk).

n

1

k=1

∑
n

K(xk, xj),

⟨ϕ̄, ϕ̄⟩ =
n2

1

k=1

∑
n

l=1

∑
n

K(xk, xl).

K
~

ij = K(xi, xj) −
n

1

k=1

∑
n

K(xi, xk) −
n

1

k=1

∑
n

K(xk, xj) +
n2

1

k=1

∑
n

l=1

∑
n

K(xk, xl).

K
~

= K − 1nK − K1n + 1nK1n,

individual entries.

Once we have the centered kernel matrix K
~

, Kernel PCA proceeds exactly like linear PCA.
We solve the eigenvalue problem:

where λ is an eigenvalue and α is the corresponding eigenvector. This step mirrors what we
do in linear PCA, where we compute eigenvectors of the empirical covariance matrix of the
data. In Kernel PCA, however, we do not have direct access to the mapped data points ϕ(xi)
, so we cannot compute the covariance matrix in feature space explicitly. Instead, it can be
shown that the centered kernel matrix K

~
plays the role of the covariance matrix in the feature

space. More precisely, K
~

is proportional to the Gram matrix of centered feature vectors, and
solving the eigenvalue problem on K

~
allows us to find the directions of maximum variance

without ever needing to compute or store the mapped features themselves. Thus, the kernel
matrix effectively replaces the covariance matrix in Kernel PCA.

Finally, to project a new point x onto the k-th principal component, we need to compute the
inner product between ϕ(x) (the feature space mapping of x) and the corresponding
principal component direction. In feature space, this principal component is expressed as:

where ϕ̄ =
n
1 ∑i=1

n
ϕ(xi) is the mean of the mapped training points.

Thus, the projection is:

Expanding this expression:

Therefore, we need to compute inner products of the form ⟨ϕ(x) − ϕ̄, ϕ(xi) − ϕ̄⟩.
Expanding this further:

K
~

α = λα,

v(k) =
i=1

∑
n

αi
(k) (ϕ(xi) − ϕ̄) ,

projection = ⟨ϕ(x) − ϕ̄, v(k)⟩.

projection = ⟨ϕ(x) − ϕ̄,
i=1

∑
n

αi
(k)(ϕ(xi) − ϕ̄)⟩ =

i=1

∑
n

αi
(k)⟨ϕ(x) − ϕ̄, ϕ(xi) − ϕ̄⟩.

⟨ϕ(x) − ϕ̄, ϕ(xi) − ϕ̄⟩ = ⟨ϕ(x), ϕ(xi)⟩ − ⟨ϕ(x), ϕ̄⟩ − ⟨ϕ̄, ϕ(xi)⟩ + ⟨ϕ̄, ϕ̄⟩.

Each of these terms can be expressed in terms of the kernel function:

• ⟨ϕ(x), ϕ(xi)⟩ = K(x, xi),
• ⟨ϕ(x), ϕ̄⟩ =

n
1 ∑j=1

n
K(x, xj),

• ⟨ϕ̄, ϕ(xi)⟩ =
n
1 ∑j=1

n
K(xj , xi),

• ⟨ϕ̄, ϕ̄⟩ =
n2
1 ∑j,k=1

n
K(xj , xk).

Thus, the centered kernel between x and xi, denoted K
~

(x, xi), is:

Finally, the projection of x onto the k-th principal component is:

This formula shows that to project a new point x, we:

1. Compute its (uncentered) kernel similarities to all training points:
(K(x1, x), … , K(xn, x)),

2. Apply the same centering adjustments as we did for the training data,
3. Take the dot product with the corresponding eigenvector α(k).

This way, we can compute projections purely using kernel evaluations, without ever explicitly
mapping into feature space.

In practice, Kernel PCA unlocks the ability to "unfold" complex structures that would be
impossible to separate using linear techniques. A classical demonstration is applying Kernel
PCA to the "Swiss roll" dataset. In the original three-dimensional space, the data is coiled like
a rolled-up sheet. Applying Kernel PCA with a radial basis function (RBF) kernel maps the
data into a lower-dimensional space where the intrinsic two-dimensional nature of the data
becomes visible and linear. Similarly, the "two moons" dataset, with its interleaving crescent
shapes, can be flattened and separated by Kernel PCA, where linear PCA would fail.

Implementing Kernel PCA is remarkably simple once the kernel matrix is constructed. We
compute the kernel matrix, center it, perform eigen-decomposition, and project onto the
leading eigenvectors. All heavy lifting is handled by basic linear algebra operations, and the

K
~

(x, xi) = K(x, xi) −
n

1

j=1

∑
n

K(x, xj) −
n

1

j=1

∑
n

K(xj , xi) +
n2

1

j,k=1

∑
n

K(xj , xk).

projectionk(x) =
i=1

∑
n

αi
(k)

K
~

(x, xi).

choice of kernel function shapes how the non-linear structure is revealed. Polynomial kernels,
RBF kernels, and even custom-designed kernels can be used, depending on the nature of the
data.

Kernel PCA elegantly shows how the kernel trick extends beyond supervised learning. By
working purely with inner products, it allows classic algorithms like PCA to operate in vastly
richer spaces. The method reveals the deep idea underlying kernel methods: transforming a
problem from one space where it is hard to another space where it is simple, without ever
computing the transformation explicitly.

Time for an example in Python. We first generate the data, define the Kernel, and compute the
Gram matrix, and center it:

X, color = make_swiss_roll(n_samples=1000, noise=0.05, random_state=42)

def rbf_kernel(X, gamma=0.02):
sq_dists = np.sum(X**2, axis=1).reshape(-1, 1) + np.sum(X**2, axis=1) - 2 * np.dot(X, X
return np.exp(-gamma * sq_dists)

K = rbf_kernel(X)

n = K.shape[0]
one_n = np.ones((n, n)) / n
K_centered = K - one_n @ K - K @ one_n + one_n @ K @ one_n

Next, we compute the principal components:

eigenvalues, eigenvectors = np.linalg.eigh(K_centered)
idx = np.argsort(eigenvalues)[::-1]
eigenvalues = eigenvalues[idx]
eigenvectors = eigenvectors[:, idx]

Normalize eigenvectors (important because in feature space, eigenvectors need normalization)
alphas = eigenvectors / np.sqrt(eigenvalues[np.newaxis, :])

Following projects the data to principal components:

X_kpca = K_centered @ alphas[:, :2]

Following are the results.

Figure: The use of a Gaussian (RBF) kernel is crucial for successfully unfolding the Swiss roll.
Because the data lies on a nonlinear manifold, points that are nearby along the roll can be far
apart in the ambient three-dimensional space. Linear PCA, which only captures global linear
directions, fails to reveal the true structure (the points that span the Y direction are squeezed
in the same space). In contrast, the Gaussian kernel captures local similarities by measuring
distances in a way that respects the manifold's curvature. Kernel PCA with the RBF kernel
thus successfully flattens the Swiss roll, revealing its intrinsic two-dimensional organization.

Kernel Logistic Regression
We can also kernalize logistic regression. Kernalizing this model may have benefits compared
to SVM, as logistic regression nicely models class probabilities and does not focus only on
crisp classification. Standard logistic regression models class probability as:

where w is a weight vector and x is the input. Instead of expressing w directly, we express it
as a linear combination of training instances:

where αi are coefficients, and xi are the training examples.

P (y = 1 ∣ x) = σ(w⊤x + b)

w =
i=1

∑
n

αixi

Substituting into the original logistic regression formula:

Thus, the model becomes:

Finally, to kernelize, we replace each inner product xi
⊤x with a kernel function K(xi, x),

giving:

Here is the code for kernalized logistic regression. We first define the data, introduce a kernel
(we opted for a Gaussian kernel) and compute the Gram matrix:

X, y = make_moons(n_samples=200, noise=0.3, random_state=42)

def rbf_kernel(X1, X2, gamma=0.5):
dists = np.sum(X1**2, axis=1)[:, None] + np.sum(X2**2, axis=1)[None, :] - 2 * X1 @ X2.T
return np.exp(-gamma * dists)

gamma = 0.5
K = rbf_kernel(X, X, gamma)

Next, we define the loss function for the logistic regression. The loss is based on the standard
log likelihood for logistic regression, that is, a cross-entropy loss:

def sigmoid(z):
return 1 / (1 + np.exp(-z))

def logistic_loss(alpha):
pred = sigmoid(K @ alpha)
return -np.mean(y * np.log(pred + 1e-15) + (1 - y) * np.log(1 - pred + 1e-15))

w⊤x = (
i=1

∑
n

αixi)
⊤

x =
i=1

∑
n

αixi
⊤x

P (y = 1 ∣ x) = σ (
i=1

∑
n

αixi
⊤x + b)

P (y = 1 ∣ x) = σ (
i=1

∑
n

αiK(xi, x) + b)

Optimization step is next:

result = minimize(logistic_loss, np.zeros(X.shape[0]), method='L-BFGS-B')
alpha = result.x

The result is depicted in the following graph.

Figure: Kernelized logistic regression, showing the decision boundary and probability
contours for the target class (in red).

Kernel k-means
Kernel methods are not limited to supervised learning. We have already shown that in our
example for kernel PCA. Another important example in unsupervised learning is kernel k-
means, which generalizes the standard k-means clustering algorithm to allow for discovering
more complex cluster shapes.

Standard k-means partitions data by assigning each point xi to the nearest cluster center μk ,

minimizing the squared Euclidean distance:

While k-means does not require linear separation between clusters, it tends to perform well
only when clusters are roughly spherical, compact, and equally sized — such as concentric or
well-separated blobs. It struggles with more complex, non-convex cluster shapes.

Kernel k-means addresses this limitation by implicitly mapping the data into a higher-
dimensional feature space using a mapping ϕ(x), where more complex structures can
become easier to separate. The algorithm then minimizes distances in the feature space:

where μk
′ is the mean of cluster k in the feature space.

Expanding the squared distance gives:

where:

• K(xi, xj) is the kernel function,
• Ck is the set of points assigned to cluster k,
• ∣Ck∣ is the number of points in cluster k.

Thus, Kernel k-means proceeds exactly like k-means but replaces Euclidean distances with
distances computed via kernels, enabling it to discover non-convex, complex cluster
structures. While we will not explore the full algorithm in this lesson, mentioning Kernel k-
means illustrates how the kernel trick can extend beyond classification to enable more flexible
clustering as well.

Kernel approximation techniques
Kernel methods enable learning complex relationships without explicit feature
transformations, but they often suffer from high computational costs. Computing and storing
the full n × n kernel matrix becomes expensive for large datasets. To address this, several

assign xi to cluster k = arg
k

min ∥xi − μk∥2

assign xi to cluster k = arg
k

min ∥ϕ(xi) − μk
′ ∥2

∥ϕ(xi) − μk
′ ∥2 = K(xi, xi) −

∣Ck∣
2

xj ∈Ck

∑ K(xi, xj) +
∣Ck∣2

1

xj ,xl∈Ck

∑ K(xj , xl)

kernel approximation techniques have been developed that make kernel methods scalable.
Two widely used techniques are the Nyström method and Random Fourier Features.

The Nyström method approximates the full kernel matrix by sampling a small subset of the
data points. Suppose we select m representative points (with m ≪ n). We compute two
smaller matrices: Kmm, the kernel matrix between the sampled points, and Knm, the kernel
matrix between all data points and the sampled points. Each entry of Kmm is given by

where xi and xj are sampled points, and each entry of Knm is given by

where xi is any data point and xj is a sampled point. The full kernel matrix Knn is then
approximated as

This reduces both storage and computation, enabling approximate kernel methods on much
larger datasets.

Random Fourier Features approximate shift-invariant kernels, such as the RBF kernel, by
mapping inputs into a randomized finite-dimensional feature space where inner products
approximate the kernel. By Bochner’s theorem, a shift-invariant kernel can be expressed as
the Fourier transform of a probability distribution. To construct random features, we sample
random frequencies ω from the Fourier transform of the kernel and define random features

where b is sampled uniformly from [0, 2π]. Instead of computing K(x, x′), we now compute

This technique reduces the problem to a simple linear model in the new randomized feature
space.

Both the Nyström method and Random Fourier Features allow large-scale learning with kernel
methods by approximating the kernel matrix or embedding the data into a lower-dimensional
space. They make kernel-based algorithms practical for modern datasets without losing much

(Kmm)ij = K(xi, xj)

(Knm)ij = K(xi, xj)

Knn ≈ KnmKmm
−1 Knm

⊤

z(x) = 2 cos(ω⊤x + b)

K(x, x′) ≈ z(x)⊤z(x′)

of the expressive power of kernels.

Kernel methods in text mining and bioinformatics
Kernel methods are highly flexible and can be adapted to domains where data are not
naturally represented as numerical vectors. In areas such as natural language processing
(NLP) and bioinformatics, kernel methods enable learning directly from structured objects like
strings, sequences, or trees.

In NLP, string kernels measure similarity between two text sequences without explicit feature
extraction. For example, the substring kernel counts the number of common subsequences
between two strings. Given two strings s and t, the kernel value is higher if they share many
common subsequences, weighted by their lengths and positions. This allows classifiers such
as SVMs to operate directly on text, enabling tasks like text classification, document
categorization, and named entity recognition without the need for explicit vectorization.

In bioinformatics, kernel methods are used to compare biological sequences such as DNA,
RNA, or proteins. A common example is the spectrum kernel, which represents sequences by
their counts of all possible k-mers (substrings of length k). The spectrum kernel between two
sequences s and t is defined as

where Φk(s) is a feature vector counting the occurrences of each possible k-mer in
sequence s. More advanced kernels, such as mismatch kernels and gapped substring
kernels, allow for small mutations, making them well-suited to biological data where
sequences may not match exactly.

In both NLP and bioinformatics, kernel methods leverage domain-specific similarity functions
to apply powerful machine learning techniques directly to structured or discrete data without
requiring manual feature engineering.

K(s, t) = ⟨Φk(s), Φk(t)⟩

	Kernel Methods – Algorithms and Applications
	Kernel Ridge Regression

	Kernel Principal Component Analysis
	Kernel Logistic Regression
	Kernel k-means

	Kernel approximation techniques
	Kernel methods in text mining and bioinformatics

