

 1

PROGRAMMING CONVERSATIONS WITH CHATBOTS
BLAŽ ZUPAN, LJUBLJANA, 2026

LECTURE NOTES FOR THE UNIVERSITY OF LJUBLJANA’S COURSE ON
CHATGPT FOR RESEARCHERS

In this lecture, we move beyond individual prompts and focus on designing whole
conversations with chatbots. By defining rules, constraints, templates, and interaction patterns
that persist across multiple turns, we effectively “program” how the chatbot behaves over time.
Rather than writing traditional code, we specify conversational logic in natural language: how
questions are refined, how subproblems are generated and verified, how outputs are
structured, and how results are incrementally transformed. This approach treats the dialogue
itself as a programmable process, where careful prompt design allows us to control, guide, and
compose chatbot behavior in a predictable and reusable way.

The notes below start with a few useful prompt techniques, but just a note: the main part of the
lecture was on data gathering, analysis of complex texts, and structured presentations,
including drawing of the graphs, from the information we have extracted.

QUESTION REFINEMENT PROMPT

We can engage language models to help us write better prompts. Here is an example initial
prompt:

Whenever I ask a question, suggest a better question and ask me if I want to use it
instead.

Or a more specific one:

Whenever I ask a question about molecular biology, suggest a better version
emphasizing machine learning and AI. Ask me for the first question to refine.

Or a bit longer one where we also define the structure of LLM’s response:

Whenever I ask a question about molecular biology, please suggest a better version of a
question that involves some computational aspect and a specific related algorithm.

Present this revised question and provide an answer (**Q: <revised question>**, **A**:
<answer>). Be brief; answer with a single sentence. Now, ask me for the first question

to refine.

Here is a brief example of the chat that followed our last prompt above:

Sure, what's your initial question about molecular biology that you'd like to refine into a
computational aspect?

 2

How do I compare two DNA sequences?

Q: How can I align two DNA sequences using the Needleman-Wunsch algorithm?

A: Use the Needleman-Wunsch algorithm to perform global sequence alignment, which
scores matches, mismatches, and gaps to find the optimal alignment between two DNA
sequences.

What's the next question you'd like to refine?

Can I infer an evolutionary tree given a set of gene sequences from various organisms?

Q: How can I construct an evolutionary tree using the Maximum Likelihood method
based on a set of gene sequences from various organisms?

A: Utilize the Maximum Likelihood method to infer an evolutionary tree, which calculates the
tree that maximizes the probability of observing the given gene sequences under a specified
model of sequence evolution.

What other question would you like to refine next?

Here, we have successfully combined several prompting techniques we have already reviewed:
programming, that is, instructing LLMs from the start on, question refinement, and constraining
the output of the LLM to a specific, pred-defined structure.

COGNITIVE VERIFIER PATTERN
Here, we will ask LLM to help us break our question or problem into a set of subquestions, or
subproblems. Our hypothesis is that once we provide an answer to these subquestions, LLM
can become more precise and can provide us with a better answer. Here is an example of such
a conversation, with an all-important initial prompt that specifies the type of chat we would like
to have.

When you are asked a question, follow these rules: (1) generate several additional
questions, one by one, that would help you to answer the questions more accurately;
(2) after you get my answers, combine them with the individual questions to produce

the final answer to the overall question. Number the questions. Ask max three
subquestions.

Sure, I can follow those rules! Could you please ask your main question so we can begin the
process?

Can I use machine learning to analyze single-cell gene expression data?

Great question! Let's break it down to get a comprehensive answer:

 3

1. What are the characteristics of single-cell gene expression data that make it suitable or
challenging for machine learning analysis?

2. What are the typical preprocessing steps required before applying machine learning to
single-cell gene expression data?

3. What are some specific machine learning techniques commonly used for analyzing
single-cell gene expression data?

Once I have your answers to these questions, I can give you a detailed and accurate
response about using machine learning for analyzing single-cell gene expression data.

1) large number of features and data instances. 2) normalization and batch-effect
correction. 3) dimensionality reduction, t-SNE visualization.

Great, thank you for the answers! Now, let's combine them with the original question:

Main question: Can I use machine learning to analyze single-cell gene expression data?

Answers to subquestions:

1. What are the characteristics of single-cell gene expression data that make it suitable or
challenging for machine learning analysis?

- Single-cell gene expression data typically have a large number of features and data
instances, which can pose challenges for traditional machine learning algorithms due to
scalability issues and high-dimensional data.

2. What are the typical preprocessing steps required before applying machine learning to
single-cell gene expression data?

- Typical preprocessing steps include normalization of gene expression values to account
for differences in sequencing depth and gene expression levels, as well as batch-effect
correction to remove technical variations introduced during sample preparation and
sequencing.

3. What are some specific machine learning techniques commonly used for analyzing
single-cell gene expression data?

- Specific techniques include dimensionality reduction methods such as principal
component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) for
visualizing high-dimensional data and identifying clusters of cells with similar gene
expression profiles.

Final answer: Yes, machine learning can be effectively used to analyze single-cell gene
expression data. However, it requires addressing challenges such as handling a large
number of features and instances, performing necessary preprocessing steps like
normalization and batch-effect correction, and employing specific techniques such as

 4

dimensionality reduction and t-SNE visualization to extract meaningful insights from the
data.

Can you modify the initial prompt for the ChatGPT to be a bit less verbose? Can you modify it so
that besides the question, we can also get an explanation of why answering this question will
provide additional insight and help in composing the final answer? Can you compose a prompt
to request that questions and their motivations be printed out in a structured way?

SEVERAL USEFUL PROMPT PATTERNS
By “prompt patterns” we here refer to the partial structure of our prompt to additionally specify
how the output should look. Here are some functional patterns that can constrain the type of
the output:

always answer with yes/no

always limit the answers to one sentence

always structure the answer to include a title and a one-paragraph summary

always answer in Slovene language

always answer with mathematical equations only, no additional explanation

Patterns give us control over the output. Test the last prompt above, and, say, ask something
technical, like

How do I determine the reaction speed of my chemical reaction?

What is principal component analysis?

Patterns in prompts allow us to instruct LLM to use the output of a specific type. You can, of
course, invent any such patterns, but it is good to know that “always limit,” “always answer,”
and “always structure the answer” are good phrases to start your prompt that constrain all
future answers by ChatGPT in the current chat. Besides those above, there are, of course, other
very interesting patterns, the persona pattern we will introduce next being one of them.

ITERATIVE DATA GATHERING
While the particular utility of the chatbots we describe here is also referred to as “chatbot
programming”, by “programming” we do not mean conventional computer programming, but
rather the incremental instruction of a large language model through natural-language prompts
that constrain, transform, and refine its output. Consider the following sequence of prompts,
issued one at a time (chatbot’s responses are not shown).

Whenever you generate output, turn it into a table with columns of property names and
rows with examples. Answer with only a few words or preferably just with numbers.

 5

What kind of city is Ljubljana, in terms of size, population, and number of theatres?
Does it have a subway?

Add Kranj and Koper.

Place cities in rows, and properties in columns (transpose current table).

Compare Maribor, Zagreb and Vienna.

Include all EU capitals.

This sequence demonstrates progressive refinement (iterative prompting) combined with a
persistent output-format constraint and table-transformation patterns, allowing the user to
gradually expand, compare, and restructure the model’s output without having to restate the
full task.

Here’s one of the intermediate answers:

Be careful; answers are not necessarily correct: Zagreb has a tram, not a subway. But
otherwise, it looks rather impressive, right? Using GPT-4o, when writing this text the latest LLM
available through ChatGPT, you can also export the resulting data into an Excel file.

Export the data to Excel file.

About tables: LLMs generate text. The data table, as shown above, is also a sequence of
characters and strings. We can copy the table (by clicking on a small copy icon in ChatGPT’s
interface). Pasting the copied text to some text editor (your instructor uses Sublime, for
instance) reveals the text generated. Or we can simply ask ChatGPT what format it uses for the
table:

What is the format that you have used to generate the table? Is this markdown?

Yes, the format I used to generate the table is Markdown. Markdown is a lightweight markup
language with plain text formatting syntax, often used for formatting readme files, for writing
messages in online discussion forums, and to create rich text using a plain text editor.

Here is the Markdown code for the table:

 6

You can use this format to generate tables in any Markdown-supported environment.

You can learn more about Markdown and its simple syntax by asking ChatGPT about it. Here, it
suffices to say that even when ChatGPT displays tables, this is rendering of a text in the
Markdown syntax, and everything is still in the realm of LLM generating a string of characters.
Similarly, for example, ChatGPT renders text in bold (Markdown syntax uses two asterixis and
with them embodies the part of the text that should be rendered in **bold**) or can display
itemized lists or even nicely set mathematical equations (using LaTeX syntax). Not that we will
discuss much about this here, but to know, again: LLMs generate text that is nicely rendered by
ChatGPT.

Could you please show me an example of a complicated equation without any extra
explanation?

Sure, here is an example of a complicated equation:

Hm, how was this rendered?

This equation was rendered using LaTeX, a typesetting system that's widely used for
mathematical and scientific documents. LaTeX allows for the precise formatting of
mathematical notation. Here's how the LaTeX code for the equation looks:

TEMPLATE PATTERN
Prompt templates are predefined structures or patterns to guide the LLMs text generation.
These templates can help in generating more consistent and targeted outputs. In practice, they
can be used either in a single step or staged across multiple prompts, where the template and
formatting constraints are defined first, and the content to be generated is provided later,

 7

enabling tighter control over both structure and process. Here is an example of a staged
prompt:

I am going to give you a template for your output. CAPITALIZED WORDS are my
placeholders. Fill in my placeholders with your output. Preserve the overall formatting
of my template. My template is: **Question:** QUESTION **Answer:** ANSWER Do not
do anything at this stage. I will give you the data to format in the next prompt. Provided

the data, you will create five questions using my template. Ok?

Sure, I understand! Just let me know when you're ready to proceed with the data.

The data: Julian’s Assange’s wife has told of her elation that the WikiLeaks founder has
been released from Belmarsh prison in London and will soon be a “free man” under a

deal in which he will plead guilty to violating US espionage law. Speaking from
Australia, where she flew on Sunday to prepare her family’s new life, Stella Assange, a

human rights lawyer, said she had not told the couple’s two young sons, Gabriel and
Max, about their father’s release after five years in jail for fear of the information

leaking. She said: “All I told them was that there was a big surprise. And, on the morning
that we left, I told them where we’re heading to the airport, and we got on the plane, and

I told them that we were going to visit our family, their cousin, their grandfather and so
on. “And they still don’t know. We’ve been very careful, because obviously, no one can

stop a five- and a seven-year-old from, you know, shouting it from the rooftops at any
given moment. Because of the sensitivity around the judge having to sign off the deal,

we’ve been very careful, just gradually, incrementally telling them information.”
Assange, 52, was woken at 2am in his cell in Belmarsh on Monday before being

handcuffed and transported to Stansted airport to take a chartered jet via Bangkok to
the island of Saipan in the Northern Mariana Islands, which is US territory.

Now please create three questions using my template.

Question: Where did Julian Assange travel after his release from Belmarsh prison?

Answer: Julian Assange was transported to Stansted airport in London and then took a
chartered jet via Bangkok to the island of Saipan in the Northern Mariana Islands, which is
US territory.

Question: Why did Stella Assange refrain from informing her sons about Julian Assange's
release immediately?

Answer: Stella Assange refrained from immediately informing her sons about Julian
Assange's release due to the sensitivity around the judge signing off on the deal. She was
concerned that their young age might lead them to inadvertently disclose the information.

Question: How long had Julian Assange been in jail before his release?

Answer: Julian Assange had been in jail for five years before his release from Belmarsh
prison in London.

 8

The next example demonstrates a prompt template used in a single step, a so-called single-
shot use of a prompt template. Here, the task description and the output template are provided
together, allowing the language model to generate structured content immediately that
matches the predefined formatting and constraints.

Create a random strength workout with complementary exercises. I am going to provide
a template for your output, where CAPITALIZED-WORDS are placeholders, replaces

them with content. This is the template: **#: NAME** <newline>**set and timing:**
REPS @ SETS, ESTIMATED-TIME-IN-MINUTES <newline> **muscles:** MUSCLE GROUPS

WORKED <newline> **difficulty:** DIFFICULTY SCALE 1-5 <newline> **notes:** FORM
NOTES. No itemization.

Notice that we have used several tricks. We embedded the text that should be set in bold with
**; we already know this stems from the markdown syntax. Placeholders are in capital letters.
We have used the “<newline>” tag to tell LLM where we want line breaks. To avoid the use of
bullets, we have added “no itemization” at the end of the prompt. The output:

1: Push-ups
set and timing: 15 @ 3, 10 minutes
muscles: Chest, Shoulders, Triceps
difficulty: 3
notes: Maintain a straight body alignment throughout.

2: Dumbbell Shoulder Press
set and timing: 12 @ 3, 12 minutes
muscles: Shoulders, Triceps
difficulty: 4
notes: Keep core engaged to avoid arching the back.

3: Bent-over Dumbbell Rows
set and timing: 12 @ 3, 10 minutes
muscles: Upper Back, Biceps
difficulty: 3
notes: Focus on pulling elbows back and squeezing shoulder blades together.

4: Bodyweight Squats
set and timing: 20 @ 3, 8 minutes
muscles: Quadriceps, Glutes, Hamstrings
difficulty: 2
notes: Keep knees tracking over toes and maintain a neutral spine.

5: Plank
set and timing: 30 seconds @ 3, 6 minutes
muscles: Core, Shoulders, Back

 9

difficulty: 2
notes: Brace your core and avoid sagging hips.

6: Dumbbell Bicep Curls
set and timing: 12 @ 3, 8 minutes
muscles: Biceps, Forearms
difficulty: 2
notes: Control the movement to fully contract the biceps.

7: Glute Bridges
set and timing: 15 @ 3, 8 minutes
muscles: Glutes, Hamstrings, Lower Back
difficulty: 2
notes: Squeeze your glutes at the top of the movement.

Cool-down: Finish with stretching exercises for each major muscle group, holding each
stretch for 20-30 seconds.

This workout targets multiple muscle groups and provides a balanced strength training
session. Adjust weights and repetitions based on your fitness level and goals.

This is already great, right? Consider an AI that, together with text like the one above, would
provide a sketch of the exercise or an instructional video. All this is probably inevitable; the AI
technology of today is still in its infancy. Until then, you can further refine the workout plan
using some more prompting and providing constraints to the list:

Group the exercises to the warmup, main part, and cooldown.

Construct the exercise plan to fit within half-an-hour.

Emphasis should be on legs and feet.

Make exercises lighter.

Or anything similar. Try it out!

TEMPLATE-DRIVEN KNOWLEDGE EXTRACTION
Let us combine the template from the previous section with further analysis of the data. Here
we combine an output schema template, an information-extraction template, and formatting
constraints to control both what is extracted and how it is presented. Suppose we are
interested in people involved in the assassination of Archduke Franz Ferdinand in Sarajevo, but
would like to instruct an LLM to provide the output in a specific form:

I am providing a template for your output. CAPITALIZED words are placeholders.
Preserve the overall formatting. My template:

 10

Bio: <NAME>
Summary: <ONE SENTENCE SUMMARY>

Born: <YEAR OF BIRTH>, <PLACE>
Major impact: <ONE SHORT PARAGRAPH OF MAJOR ROLE OF THIS PERSON>

Extract the names of all the people mentioned in the following text and report on them
using the template.

<<<In the summer of 1914, the sovereigns of Europe were woven together by treaties,
alliances, as well as secret agreements. The Triple Alliance (1882) encompassed the

German Empire, Austria, and Italy.[34]

On 28 June 1914, Archduke Franz Ferdinand of Austria, heir presumptive to Emperor
Franz Joseph I of Austria, visited Sarajevo, the capital of the recently annexed Bosnia

and Herzegovina. Cvjetko Popović, Gavrilo Princip, Nedeljko Čabrinović, Trifko Grabež,
and Vaso Čubrilović (Bosnian Serbs) and Muhamed Mehmedbašić (from the Bosniaks
community),[35] from the movement known as Young Bosnia, took up positions along
the route taken by the Archduke's motorcade, to assassinate him. Supplied with arms
by extremists within the Serbian Black Hand intelligence organisation, they hoped his

death would free Bosnia from Austrian rule, although there was little agreement on
what would replace it.[36]

Nedeljko Čabrinović threw a grenade at the Archduke's car and injured two of his aides,
who were taken to hospital while the convoy carried on. The other assassins were also

unsuccessful but, an hour later, as Ferdinand was returning from visiting the injured
officers, his car took a wrong turn into a street where Gavrilo Princip was standing. He

fired two pistol shots, fatally wounding Ferdinand and his wife Sophie.[37] Although
Emperor Franz Joseph was shocked by the incident, political and personal differences

meant the two men were not close; allegedly, his first reported comment was "A higher
power has re-established the order which I, alas, could not preserve".[38]>>>

Bio: Archduke Franz Ferdinand of Austria
Summary: Archduke Franz Ferdinand of Austria, heir presumptive to Emperor Franz Joseph
I, was assassinated in 1914, an event that triggered World War I.
Born: 1863, Graz, Austria
Major impact: Archduke Franz Ferdinand's assassination in Sarajevo by Gavrilo Princip of
the Young Bosnia movement on June 28, 1914, sparked a series of events leading to the
outbreak of World War I. His death destabilized Europe, setting off a chain reaction of
alliances and conflicts that culminated in a global war.

Bio: Gavrilo Princip
Summary: Gavrilo Princip was a Bosnian Serb nationalist who assassinated Archduke Franz
Ferdinand of Austria, sparking World War I.
Born: 1894, Obljaj, Bosnia and Herzegovina
Major impact: Gavrilo Princip's assassination of Archduke Franz Ferdinand of Austria on
June 28, 1914, was a catalyst for World War I. As a member of the Young Bosnia movement,

 11

Princip's actions were driven by a desire for Bosnian independence from Austrian rule,
although his act led to widespread and catastrophic consequences.

Bio: Nedeljko Čabrinović
Summary: Nedeljko Čabrinović was one of the assassins involved in the plot to kill Archduke
Franz Ferdinand of Austria.
Born: 1895, Sarajevo, Bosnia and Herzegovina
Major impact: Nedeljko Čabrinović attempted to assassinate Archduke Franz Ferdinand of
Austria on June 28, 1914, by throwing a grenade at his car. Although unsuccessful in killing
the Archduke, Čabrinović's actions contributed to the tensions that led to the outbreak of
World War I.

…

The list includes few more people. Amazing, right? In prompt engineering, templates play a
crucial role in shaping the way queries or prompts are constructed to elicit specific responses
from language models like GPT-3. Templates essentially serve as structured formats or
frameworks into which variables or placeholders can be inserted. They can improve
standardization and consistency, reproducibility, assist in targeted query generation.
Templates can be adapted and scaled across different applications and domains. Once a
template structure is defined, it can be reused with minor adjustments for similar tasks or
contexts, which saves time and effort in prompt design.

DRAWING INTERACTION GRAPHS: SARAJEVO ASSASSINATION
This part is a bit tricky. Graph drawing is currently supported in both Copilot Chat and ChatGPT,
but unless you provide specific and detailed instructions, the resulting graphs can be
(extremely) messy and unhelpful. Of course we expected this to be improved in the coming
months. But before that, and if you're a computer scientist—or simply someone who enjoys
creating or exploring graphs—you can write a well-structured prompt with clear instructions.
This prompt, if put together right, can then be translated into a Python script that produces
clean and meaningful visualizations. (I did say this section was tricky!)

The example below was actually inspired by a question from the audience during our last
lecture. We were discussing the people involved in the Sarajevo Assassination, and at the and
of the lecture there was a question whether it was possible to prompt for the interactions
between those individuals. Not only is it possible—we can also generate a neat sociogram.
Here's how:

Please read:
https://en.wikipedia.org/wiki/Assassination_of_Archduke_Franz_Ferdinand. Questions

will follow. Ok?

Got it. Ready when you are.

 12

Find pairs of people who were in contact with each other prior to the assassination. Use
the form: person-person. Search for at least 20 such interactions.

Here are at least 20 pairs of people who were in contact with each other prior to the
assassination of Archduke Franz Ferdinand, based on the Wikipedia article 1:

Gavrilo Princip – Danilo Ilić
Danilo Ilić – Nedeljko Čabrinović
Danilo Ilić – Trifko Grabež
Danilo Ilić – Vaso Čubrilović
Danilo Ilić – Cvjetko Popović
Danilo Ilić – Muhamed Mehmedbašić
Danilo Ilić – Milan Ciganović
Danilo Ilić – Major Vojislav Tankosić
Gavrilo Princip – Trifko Grabež
Gavrilo Princip – Nedeljko Čabrinović
Gavrilo Princip – Vaso Čubrilović
Gavrilo Princip – Cvjetko Popović
Gavrilo Princip – Muhamed Mehmedbašić
Nedeljko Čabrinović – Trifko Grabež
Nedeljko Čabrinović – Vaso Čubrilović
Nedeljko Čabrinović – Cvjetko Popović
Trifko Grabež – Vaso Čubrilović
Trifko Grabež – Cvjetko Popović
Dragutin Dimitrijević – Major Vojislav Tankosić
Dragutin Dimitrijević – Rade Malobabić

Construct an interaction graph where people are represented as nodes, and the edges
represent their interactions. Render this graph with a Python script, use Graphviz, save

the result in an image file, and show it here.

Here is the interaction graph showing connections between individuals involved in the
assassination of Archduke Franz Ferdinand:

Edges should be directed. A -> B, where A is the one that initiated the contact.

 13

Describe every interaction with one word, and use this as an edge label. Revise the
graph accordingly.

Add edges that show the arming of Gavrilo Princip. Denote most important interactions
with thick lines.

Here's the enhanced interaction graph with thicker lines highlighting the most important
interactions, such as recruitment and arming of Gavrilo Princip:

Disclaimer: the author of this text does not claim anything is right in this graph, though some
interactions at least make sense, and others would need to be verified and scrutinized by
somebody with knowledge of history. The only purpose of this section was to show that such
graphs can be created, and because of the Graphviz package (created in 1991!) they can be
very neat.

DRAWING INTERACTION GRAPHS: GENE NETWORKS
Here is one more graphing example, perhaps better fitting to biomedical audience, but using
almost exactly the same tricks as above.

 14

Name most important genes in Dictyostelium development.

Some of the most important genes involved in Dictyostelium discoideum development
include:

acaA – Encodes adenylyl cyclase A, crucial for cAMP signaling during aggregation.
carA – cAMP receptor A, essential for detecting cAMP and initiating aggregation.
gtaC – A transcription factor regulating gene expression during early development.
gbfA – G-box binding factor, another transcription factor controlling developmental genes.
cudA – Required for culmination; expressed in the tip organizer.
statA – A STAT-like transcription factor regulating prestalk cell differentiation.
ecmA / ecmB – Marker genes for prestalk cell subtypes.
tagB / tagC – Involved in cell-type-specific gene regulation during differentiation.
pspA – Prespore-specific gene, a marker of spore cell fate.
rapA / rapC – Regulate aggregation and differentiation via Ras signaling.

These genes play roles in signaling, transcriptional regulation, and cell fate determination
throughout the stages from aggregation to fruiting body formation.

List (epistatic) interactions between these genes. Like: gene -> gene: name of the
interaction where "->" means influences (the expression), and where "name of the

interaction" is a short name of what the interaction is (say, inhibits, excites, blocks,
empowers, use one word only.

acaA -> carA: excites
carA -> gtaC: excites
gtaC -> gbfA: empowers
gbfA -> cudA: excites
cudA -> ecmA: excites
cudA -> ecmB: excites
statA -> ecmA: empowers
statA -> ecmB: empowers
ecmA -> pspA: blocks
ecmB -> pspA: blocks
tagB -> pspA: excites
tagC -> ecmA: empowers
tagC -> ecmB: empowers
rapA -> acaA: excites
rapC -> carA: excites

Now use this list, and construct a graph with genes as nodes and relations as directed
edges (instead of arrow, inhibits is a full circle). Annotate the relations. Create the

graph using Python and Graphviz, and store the image; this is the result. Render the
image (inline).

 15

Use different types of arrows for different relations. Blocks could have a filled circle at
the end of the edge instead of the arrow. Excites could be strong arrows and empowers

a dashed one.

Depending on the verbosity of the chatbots there is usually some more text associated with
such chat, and we have left it out. Copilot Chat would also offer to draw its own graph, and
while it is perfectly ok to try, they still need to work on this.

