
Phylogenetic Trees

Phylogenetics is the study of evolutionary history and relationships
among organisms. It seeks to reconstruct how species, genes, or
populations diverged from common ancestors, forming the tree of
life. From the earliest days of natural history (Fig. 27), biologists have
sought to classify living forms and understand their relationships.
Before the era of molecular biology, these efforts relied on observable
features of organisms, such as morphology, anatomy, and physiology.
With these data, scientists built hierarchical systems of classification,
grouping organisms by shared traits that were presumed to reflect
common ancestry.

Figure 27: Charles Darwin’s “I think”
sketch (1837), the first known diagram-
matic representation of a phylogenetic
tree. Drawn in his Notebook B, it cap-
tures the idea that all species descend
from common ancestors through
branching evolution, a concept that
became central to modern evolutionary
biology.

The motivation for studying phylogeny extends beyond taxonomy.
Understanding evolutionary relationships provides crucial insights
into how traits and functions evolved, how pathogens and their hosts
co-evolve, and how genetic variation shapes adaptation. In medicine,
for example, phylogenetic analyses help trace the origin and spread
of infectious diseases, identify reservoirs of emerging pathogens, and
guide vaccine development by revealing evolutionary patterns in
viral genomes.

Phylogenetic inference can draw on many types of data. Histori-
cally, biologists compared:

• Morphological traits, such as body shape, bone structure, or organ
systems;

• Quantitative traits, such as size, weight, or other measurable fea-
tures;
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• Physiological or behavioral traits, including metabolic rates, tempera-
ture tolerance, or mating behavior.

These observable characteristics, though valuable, often reflect
both genetic and environmental influences, which can obscure true
evolutionary relationships. As a result, early phylogenies based
purely on morphology were sometimes inconsistent or simply
wrong.

The advent of molecular biology transformed the field. Modern
molecular phylogenetics reconstructs evolutionary relationships using
genetic data that includes DNA, RNA, or protein sequences. Because
sequences carry information inherited from common ancestors, they
offer a direct record of evolutionary history. Conserved genes, which
change slowly over time, are particularly useful for comparing dis-
tant species, while rapidly evolving regions reveal recent divergences
among closely related taxa.

In this chapter, we focus on methods that infer phylogenetic trees
from molecular data. We assume that sequence alignments have
been performed and that measures of similarity or distance between
sequences are available. Using these distances, we will introduce
two classical approaches for tree reconstruction: the Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) and the Neighbor Joining
method.

Phylogenetic Trees

A phylogenetic tree (e.g. Fig. 29) is a central concept in evolutionary
biology. It is a model that represents the inferred evolutionary rela-
tionships among a set of organisms or genes. It provides a structured
way to visualize how groups of organisms, known as taxa, are related
through common ancestry. Each branch in the tree represents a lin-
eage that diverges over time, accumulating genetic changes that lead
to the diversity of life we observe today.

Figure 28: Elements of a phylogenetic
tree.

Let us start with some terminology. A taxon (plural: taxa) refers to
any group of one or more organisms that a taxonomist considers to
form a unit. A taxon may represent a species, a genus, a family, or
a higher-level grouping such as a phylum. The scientific discipline
concerned with identifying, naming, and classifying organisms—both
living and extinct—is called taxonomy. It provides the hierarchical
framework within which phylogenetic relationships are interpreted.

In a phylogenetic tree, the leaves (or terminal nodes) correspond
to known, extant taxa, while the internal nodes represent inferred an-
cestral taxa that no longer exist. The branches connecting these nodes
trace the evolutionary pathways linking ancestors and descendants.
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Figure 29: A part of a phylogenetic tree
of pelecaniformes from osteological
data, as published in Smith ND in
PLOS One (2010).

In most such representations, the length of a branch is assumed to
be proportional to evolutionary time or to the number of accumu-
lated mutations, reflecting the concept of evolutionary distance. This
assumption implies that mutations occur at a constant rate along all
lineages—a simplifying but often useful approximation known as
the molecular clock hypothesis. While real evolutionary processes may
deviate from a perfectly constant rate, this assumption allows us to
translate genetic differences into temporal relationships.

Phylogenetic trees can take different forms depending on the data
and assumptions (Fig. 30). In a binary tree, each internal node gives
rise to exactly two descendant branches, representing a series of
bifurcations in evolutionary history. Binary trees are rooted, meaning
they have a common ancestor at the root. In contrast, an unrooted
tree depicts relationships among taxa without specifying a common
ancestor or a direction of evolution.

Figure 30: Rooted (left) and unrooted
tree (right).

Phylogenetic Trees as Models

To construct a phylogenetic tree from molecular data, we begin with
a set of pairwise distances between taxa, denoted by dij for taxa τi
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and τj. These distances are obtained from aligned genetic sequences
and depend on the type of sequence, alignment method, and scor-
ing matrix. From alignments, we estimate the number of substitu-
tions or mutations, possibly applying correction models (such as
Jukes–Cantor, discussed later) to account for multiple substitutions at
the same site.

A phylogenetic tree provides a model that explains these pair-
wise distances. If the distances are additive, the distance between any
two taxa equals the sum of branch lengths connecting them. Thus,
theoretical distances can be computed directly from the tree and
compared with those derived from sequence data.

For example, consider the unrooted tree in Figure 31, with branch
lengths representing evolutionary distances. The corresponding
model distances are:

τB τC τD

τA 4 5 6
τB 3 4
τC 3

Figure 31: An example tree with edges
labeled with distances.

Ideally, these model distances should match those inferred from
the aligned sequences. The problem of tree reconstruction is there-
fore to find the topology and branch lengths such that the modeled
distances best approximate the observed ones.

In principle, construction of the phylogenetic tree is an optimiza-
tion task, where we aim to minimize the discrepancy between ob-
served and expected distances. Since the number of possible tree
topologies grows exponentially with the number of taxa, exhaus-
tive search is infeasible. Practical methods, such as those introduced
later in this chapter, use heuristic, hill-climbing approaches that itera-
tively improve the fit between model and data without guaranteeing
a global optimum.

Unweighted Pair Group Method with Arithmetic Mean

UPGMA starts with each taxon as its own group and repeatedly
merges the two groups with the smallest distance (or highest sim-
ilarity) until a single group remains. It is identical to hierarchical
clustering with average linkage, where for two groups of taxa Gi and
Gj the intergroup distance is

D(Gi, Gj) =
1

|Gi| |Gj| ∑
p∈Gi

∑
q∈Gj

dpq.
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After merging Gi and Gj into Gk = Gi ∪ Gj, distances to any other
group Gℓ are updated by the size–weighted average

D(Gk, Gℓ) =
|Gi| D(Gi, Gℓ) + |Gj| D(Gj, Gℓ)

|Gi|+ |Gj|
.

UPGMA produces an ultrametric tree, a special kind of phylogenetic
tree in which all paths from the root to any leaf have equal total
length. That means all taxa are equally distant from their common
ancestor, implying a constant rate of evolution.

UPGMA: a worked example

Start with the pairwise distances among taxa τA, τB, τC, τD:

τB τC τD

τA 4 5 6
τB 3 4
τC 3

Step 1: merge τC and τD. The minimum distance is dCD = 3, so merge
GE = {τC, τD}. Update distances:

D(τA, GE) =
1
2 (dAC + dAD) =

5+6
2 = 5.5,

D(τB, GE) =
1
2 (dBC + dBD) =

3+4
2 = 3.5.

The new distance matrix is:

τB GE

τA 4 5.5
τB 3.5

Step 2: merge τB and GE. The minimum is 3.5, so merge GF =

{τB, τC, τD}. Update the distance to τA (sizes: |{τB}| = 1, |GE| = 2):

D(τA, GF) =
1 · D(τA, τB) + 2 · D(τA, GE)

1 + 2
=

4 + 2 · 5.5
3

=
15
3

= 5.

The final distance matrix is:

GF

τA 5

The procedure discribed above yields an ultrametric tree with
merges at distances 3, 3.5, and 5, as shown in Figure 32.

Figure 32: UPGMA tree from our
worked-out example.

Problems with UPGMA

UPGMA has several limitations:
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• All taxa are placed at the same present time, that is, leaves are
aligned at time 0 (Fig. 33).

• It assumes a strict molecular clock (substitutions accumulate at a
constant rate along all lineages).

• The fitted ultrametric tree need not be faithful to the input dis-
tances.

Figure 33: In ultrametric trees, all taxa
are placed at the same present time
(leaves aligned at time 0).

To see the lack of faithfulness, compare observed and model-
implied distances. From the UPGMA tree in Figure 31, the path
between τA and τB has two branches of length 2.5, so the estimated
distance is

d̂AB = 2.5 + 2.5 = 5,

whereas the observed dAB from the data is 4.

Figure 34: The ultrametric condition,
graphically.

A useful diagnostic is the ultrametric condition (Fig. 34). For any
triplet {τi, τj, τk}, the distances are ultrametric iff the two largest
values among {dij, dik, djk} are equal and the third is less than or
equal to them (equivalently, the strong triangle inequality dij ≤
max(dik, djk) with the maximum attained at least twice). In our ex-
ample,

dAB = 4, dAC = 5, dBC = 3,

the two largest distances (5 and 4) are not equal, so the data are not
ultrametric. Hence no UPGMA (ultrametric) tree can be perfectly
faithful to these input distances; the algorithm necessarily distorts
some values to enforce ultrametricity.

Neighbor Joining Algorithm

Neighbor joining (NJ) is a bottom–up, agglomerative method for
constructing phylogenetic trees from a distance matrix. Unlike UP-
GMA, NJ does not assume an ultrametric clock; it seeks a tree whose
additive path lengths best match the observed distances.

Let D = (dij) be the current distance matrix among our investi-
gated taxa {τ1, . . . , τn}. In the NJ algorithm, the matrix Q is a trans-
formed version of the distance matrix D used to decide which pair of
taxa to join next. It corrects for the overall divergence of each taxon Introduced by Naruya Saitou and

Masatoshi Nei in 1987 (Mol. Biol. Evol.
4:406–425). The Q-matrix correction
made neighbor joining robust to
unequal evolutionary rates. Its algebraic
form was so unexpectedly effective that
early researchers jokingly called it
“black magic.”

from all others, reducing the risk of joining pairs that appear close to
each other merely because they are both distant from the remaining
taxa. Formally,

Q(τi, τj) = (n − 2)dij − Ri − Rj, Ri =
n

∑
k=1

dik.



phylogenetic trees 95

where dij is the observed distance between taxa τi and τj, while Ri

and Rj are the total distances of τi and τj to all other taxa, reflecting
their overall separation in the dataset.

A note on the equation above is in order. The factor (n − 2) arises
from the algebraic derivation of neighbor joining as a method that
minimizes the total branch length of the tree. Each distance dij con-
tributes to connections with the remaining n − 2 taxa, so the term
(n − 2)dij balances this contribution against the overall divergences
Ri and Rj. It serves as a normalization ensuring that pair selection
remains consistent as the number of taxa decreases.

The Q-matrix values are not distances themselves but criteria indi-
cating how suitable each pair is for joining. The pair (τi, τj) with the
smallest Q(τi, τj) is selected for merging, since minimizing Q tends to
minimize the total branch length of the inferred additive tree.

Construction of the tree by neighbour joining starts from a star
topology. Initially, all taxa are attached to a central node. At each
iteration it joins a pair (τi, τj) into a new internal node v (Fig. 35),
computes branch lengths Lτiv and Lτjv, and replaces τi, τj by v in the
matrix. Distances from v to remaining taxa are then updated and the
process repeats.

Figure 35: A single step of the NJ
algorithm. Just the nodes connected to
the center of the star are shown.

Figure 36: The topology for the deriva-
tion of the three-point formula.

To compute the distances between newly introduced node v and
all other taxa, we use the three-point formula. Consider the case of
three taxa τA, τB, τC attached to a central node Z (Fig. 36) with limb
lengths Lx, Ly, Lz, the observed distances satisfy

Lx + Ly = dAB,

Lx + Lz = dAC,

Ly + Lz = dBC.

We can subtract dAB from dAC to get Lz − Ly = dAC − dAB, then add
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Ly + Lz = dBC to obtain

Ly = 1
2
(
dAB + dBC − dAC

)
,

Lx = 1
2
(
dAB + dAC − dBC

)
,

Lz =
1
2
(
dAC + dBC − dAB

)
.

In general, for joining (τi, τj), distances from the new node v to
any other τk follow

dvk =
1
2
(
dik + djk − dij

)
.

Branch lengths for the joined pair are then computed as follows.
Using the Q-selection and the row sums Ri, Rj,

Lτiv = 1
2 dij +

Ri − Rj

2(n − 2)
, Lτjv = dij − Lτiv.

We now have all the ingredients to describe the NJ algorithm:

1. Initialization. Assume a star topology over {τ1, . . . , τn}; set
D(0) = D.

2. Select neighbors. For current D(t) with nt taxa, compute Ri =

∑k dik and the matrix Q(τi, τj) = (nt − 2)dij − Ri − Rj. Choose the
pair (τi, τj) with the smallest Q (we use Q rather than raw dij to
correct for overall proximity to the rest).

3. Create a new node and update distances.

(a) Introduce a new node v joining τi, τj with branch lengths

Lτiv = 1
2 dij +

Ri − Rj

2(nt − 2)
, Lτjv = dij − Lτiv.

(b) For every remaining τk, set

dvk =
1
2
(
dik + djk − dij

)
.

(c) Form the reduced matrix by replacing τi, τj with v.

4. Iterate. If more than two taxa remain, return to Step 2; otherwise
connect the last two nodes and assign the final branch length by
their remaining distance.

NJ thus iteratively identifies neighbors in the additive sense, com-
putes edge lengths via the three-point formula, and builds a tree
consistent with the observed distances without enforcing a molecular
clock.
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Neighbor Joining: an Example

Data. Consider the distance matrix D = (dij) for taxa a, b, c, d, e, with
row sums Ri = ∑j dij shown at right:

a b c d e Ri

a 0 17 21 31 23 92
b 17 0 30 34 21 102
c 21 30 0 28 39 118
d 31 34 28 0 43 136
e 23 21 39 43 0 126

Initial topology. We start with n = 5 taxa all attached to a central
node, as shown in Figure 37.

Figure 37: The initial star topology for
the NJ algorithm.

Step 1: the first join. With n = 5, we compute the neighbour joining
matrix Q with Q(i, j) = (n − 2)dij − Ri − Rj = 3dij − Ri − Rj:

b c d e
a −143 −147 −135 −149
b −130 −136 −165
c −170 −127
d −133

The smallest entry in this matrixis Q(c, d) = −170, so in the first step
we join c and d into a new node u. Resulting tree topology is shown
in Figure 38.

Figure 38: The tree topology after the
first step of the NJ algorithm.

We now need to compute the branch lengths for the joined pair
u = (c, d) to the nodes c and d. With dcd = 28, Rc = 118, Rd = 136,
and n = 5, we get:

Lcu = 1
2 dcd +

Rc − Rd
2(n − 2)

= 28
2 +

−18
6

= 11,

Ldu = dcd − Lcu = 17.

In order to continue with joining, we have to update the distances
from the new node u to the remaining taxa. For each remaining
taxon k ∈ {a, b, e}, we compute:

duk =
1
2
(
dck + ddk − dcd

)
,

giving dua = 12, dub = 18, and due = 27. The reduced matrix on
{a, b, e, u} is as follows, where we have also added the column for the
row sums Ri:

a b e u Ri

a 0 17 23 12 52
b 17 0 21 18 56
e 23 21 0 27 71
u 12 18 27 0 57
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Step 2: the second join. We are now ready to repeat the process.
With n = 4, we compute the Q(i, j) = 2dij − Ri − Rj. The adjusted
distance matrix is:

b e u
a −74 −77 −85
b −85 −77
e −74

The smallest values tie at Q(a, u) = −85 and Q(b, e) = −85. We
resolve the tie arbitrarily by joining (b, e) into a new node v (Fig. 39).
The lengths of the new branches are:

Lbv = 1
2 dbe +

Rb − Re

2(n − 2)
=

21
2

+
56 − 71

4
= 6.75,

Lev = dbe − Lbv = 21 − 6.75 = 14.25.

Figure 39: The tree topology after the
second step of the NJ algorithm, where
we just joined b and e into v.

We now need to compute the distances to the new node v:

dav = 1
2 (dab + dae − dbe) =

1
2 (17 + 23 − 21) = 9.5,

duv = 1
2 (dub + due − dbe) =

1
2 (18 + 27 − 21) = 12.

The resulting distance matrix is:

a u v
a 0 12 9.5
u 12 0 12
v 9.5 12 0

You will notice that we did not add the column for the row sums
Ri this time. Why?

Step 3: no more joins, just computations of branch lengths. With
three nodes left, we can now compute the branch lengths, that is,
distances to the center z by the three-point formula:

daz =
1
2
(
dau + dav − duv

)
= 1

2 (12 + 9.5 − 12) = 4.75,

duz =
1
2
(
dau + duv − dav

)
= 1

2 (12 + 12 − 9.5) = 7.25,

dvz =
1
2
(
dav + duv − dau

)
= 1

2 (9.5 + 12 − 12) = 4.75.

The final tree is shown in Figure 40. Great. Done. We have con-
structed a phylogenetic tree from the distance matrix using the neigh-
bour joining algorithm. But is the tree faithful to our initial distance
data? Let us check, and use out tree model to estimate the distance
between c and e:

Figure 40: The final tree topology after
the NJ algorithm.

The final tree is shown in Figure 40. We have constructed a phy-
logenetic tree from the distance matrix using the neighbor joining
algorithm. Great, done! But is the tree faithful to the initial distances?
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As a check, let us estimate the model distance between c and e:

d̂ce = Lcu + duz + dvz + Lev

= 11 + 7.25 + 4.75 + 14.25

= 37.25.

From the data, dce = 39, so the tree underestimates by 39 − 37.25 =

1.75. This illustrates that NJ yields a close, but not perfectly faithful,
additive fit when the input distances are not exactly additive.

Open Questions

The neighbor joining algorithm provides an efficient and widely used
approach to reconstruct phylogenetic trees, but several important
questions remain regarding the quality and interpretation of the
resulting tree.

Faithfulness of the reconstruction. A tree is said to be faithful (or ad-
ditive) if the distances measured along the tree exactly reproduce
the observed pairwise distances between taxa. For neighbor joining,
faithfulness holds when the input distance matrix is itself additive,
that is, when it satisfies the four-point condition:

dij + dkl ≤ max(dik + djl , dil + djk) for all distinct i, j, k, l.

When this condition is met, NJ reconstructs the true additive tree ex-
actly. In the example above, the distances approximately satisfy but
do not perfectly meet additivity, so the resulting tree is a close ap-
proximation but not strictly faithful. Small deviations from additivity
can lead to slight distortions in branch lengths or topology.

Estimating stability: bootstrap. To assess the reliability of inferred
clades, one can use the bootstrap method. In this approach, the orig-
inal sequence alignment is resampled with replacement to generate
many pseudo-replicate datasets. For each replicate, a tree is recon-
structed (using NJ or another method). The frequency with which
a given branch or grouping appears across replicates provides a
measure of its statistical support, often expressed as a bootstrap per-
centage. High bootstrap values (typically above 70–80%) indicate
well-supported branches; low values suggest uncertainty in the in-
ferred relationships.

Position of the root. The neighbor joining algorithm produces an
unrooted tree, showing relationships among taxa without specifying
the direction of evolution. To assign a root, one typically introduces
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an outgroup—a taxon known to be distantly related but still part of
the broader evolutionary context. The root is then placed on the
branch connecting the outgroup to the rest of the taxa, orienting the
tree and allowing inference of ancestral–descendant relationships.

Comparison with UPGMA. Unlike UPGMA, neighbor joining does
not assume a constant rate of evolution and can therefore accom-
modate non-ultrametric data. It is generally more faithful to the
observed distances when the molecular clock assumption is violated.
The fit of any reconstructed tree to the data can be quantified, for
instance, by the least-squares error between observed and tree-implied
distances:

E = ∑
i<j

(
dij − d̂ij

)2.

Lower E indicates a tree that better reproduces the observed dis-
tances. Comparing EUPGMA and ENJ for the same dataset allows an
objective assessment of which method yields a more faithful model of
the evolutionary relationships.


