Sequence Alignment

Before we can understand how genes evolve and how their functions
relate across organisms, we must first learn how to compare biolog-
ical sequences in a meaningful way. The comparison of DNA, RNA,
and protein sequences lies at the heart of modern bioinformatics,
providing the basis for discovering evolutionary relationships, identi-
fying functional regions, and annotating newly sequenced genomes.
Sequence alignment is the systematic arrangement of sequences to
reveal their similarities and differences. It serves as the foundation
for nearly every computational analysis in molecular biology.

Evolution

In 1973, evolutionary biologist Theodosius Dobzhansky famously
declared that “nothing in biology makes sense except in the light of
evolution.” . This statement places evolutionary theory at the cen-
ter of unifying all aspects of biological science. Evolution provides
the framework through which the diversity of life, the complexity
of organisms, and the relationships among species can be under-
stood. From molecular genetics to ecology, every biological obser-
vation gains coherence when viewed as part of an ongoing process
of change driven by variation, inheritance, and natural selection.
Without evolution, the facts of biology would remain isolated and
inexplicable, with it, they form an integrated picture of life’s history
and its continuous adaptation to a changing world.

Evolution is the process by which populations of organisms
change over generations through variation (mutations of their genome),
inheritance, and selection. Random mutations introduce genetic di-
versity, while natural selection favors variants that enhance survival
or reproduction. Over time, these gradual changes accumulate, pro-
ducing the diversity of life observed today. "Over time" here is actu-
ally an understatement. Evolution had billions of years in order to
shape the life as we know it (Table 2).

Historically, evolution was studied by comparing the morphology,
that is, the form and structure of organisms. Evolutionary biologists

Dobzhansky T, Am. Biol. Teacher 35,
125-129 (1973)

The concept of evolution predates
Darwin, with early ideas of species
change proposed by naturalists like
Jean-Baptiste Lamarck (1809). However,
it was Charles Darwin’s On the Origin
of Species (1859) that unified these ideas
with a coherent mechanism—natural
selection—supported by extensive
evidence. Modern evolutionary biology
integrates genetics, paleontology, and
molecular biology to describe how life
has evolved over billions of years.

60 INTRODUCTION TO BIOINFORMATICS

Time (approx.) Event

4.54 Ga Formation of Earth

4.0-3.8 Ga Earliest evidence of life (simple microbial activity)
3.5 Ga Emergence of bacteria and prokaryotic cells
2.5-2.0 Ga Rise of atmospheric oxygen

2.1-1.8 Ga Appearance of eukaryotic cells

1.2 Ga Emergence of multicellular organisms

700—-600 Ma First animals (sponges and soft-bodied forms)
500—475 Ma First plants colonize land

525-500 Ma Appearance of vertebrates (jawless fish)

400-360 Ma Transition of vertebrates to land (amphibians)
200-150 Ma Evolution of early mammals alongside dinosaurs
7-6 Ma Emergence of hominins (early human ancestors)
300—200 ka Appearance of modern humans (Homo sapiens)

examined fossils, bones, and visible traits of organisms, and com-
pared these to relate them, finding similarities and differences. With
advances in molecular biology, scientists began comparing proteins
and DNA sequences, enabling much finer resolution. Computational
models, statistical inference, and phylogenetic trees now allow the
reconstruction of evolutionary relationships from molecular data.
Gene sequences record the history of evolution at the molecular
level. Mutations accumulate over time, leaving detectable patterns of
similarity and difference among species. By analyzing these patterns
computationally, researchers can infer common ancestry, estimate
divergence times, and even predict evolutionary pressures.

Homology

In evolutionary biology and bioinformatics, homologous genes are
genes that share a common ancestral origin. They can be classified
into two main types: orthologs and paralogs. Orthologous genes
arise from a speciation event, meaning they are found in different
species but originated from a single gene in the last common ances-
tor. These genes typically retain the same function across species,
making them key for inferring evolutionary relationships and con-
structing phylogenetic trees. In contrast, paralogous genes result
from a gene duplication event within a genome and may evolve new
or specialized functions over time.

Understanding homology—and distinguishing orthologs from
paralogs—is crucial in comparative genomics, because it allows
researchers to trace gene evolution, predict gene function across
species, and reconstruct the molecular history of life.

A classic example of orthologs is the hemoglobin S-chain gene

Table 2: Key events in the history of
Earth and life (Ga = billion years ago;
Ma = million years ago; ka = thousand
years ago).

Evolutionary biology is the branch of
biology that studies the origin, change,
and diversification of species over time
through mechanisms such as mutation,
selection, gene flow, and genetic drift.

SEQUENCE ALIGNMENT

in humans and the hemoglobin B-chain gene in whales (or, equiva-
lently, the myoglobin genes in both species). These genes descended
from the same ancestral gene in the last common ancestor of humans
and whales and retain similar oxygen-binding functions in their
respective species, illustrating how mammals adapted to different
environments while conserving core physiological mechanisms. An-
other striking case involves the Hox genes, which control body-plan
development in animals: the same basic set of Hox genes that pat-
terns the body of a fruit fly also guides limb and vertebrae formation
in humans.

Paralogs, by contrast, showcase how gene duplication propels in-
novation. Gene duplication is essentially a genetic accident. It occurs
when a segment of DNA is copied twice during replication or recom-
bination. While accidental, such duplications provide extra genetic
material that evolution can experiment with — one copy maintains
the original function, while the other is free to accumulate mutations
and potentially evolve new functions. For example, the human globin
genes—a-globin and B-globin—originated from a single ancestral
gene but duplicated and diverged to specialize in different parts of
the hemoglobin molecule, improving oxygen transport. Similarly, the
numerous olfactory receptor genes in humans and other mammals
arose from repeated duplications, allowing species to detect a wide
range of smells.

These examples illustrate how the study of homologous, orthol-
ogous, and paralogous genes reveals the deep evolutionary connec-
tions among organisms, and how gene duplication and divergence
drive the diversity of life’s molecular machinery. They also motivate
us to craft algorithmic means of finding these genes, that is, com-
paring the genetic sequences within the same and between different
organisms. The core techniques for sequence comparison are meth-
ods that study sequence alignment.

Sequence Alignments

To understand relationships between genes or proteins, we need a
systematic way to compare their sequences. Sequence alignment
is the process of arranging two or more DNA, RNA, or protein se-
quences to identify regions of similarity that may indicate functional,
structural, or evolutionary relationships. Alignments reveal where
nucleotides or amino acids correspond between sequences, account-
ing for possible insertions, deletions, or substitutions that occurred
over time.

Beyond evolutionary studies, sequence alignment underlies many
tasks in bioinformatics. These include predicting gene or protein

61

62 INTRODUCTION TO BIOINFORMATICS

function by similarity to known sequences, identifying coding re-
gions in genomes, assembling overlapping fragments in sequencing
projects, constructing phylogenetic trees, and searching for orthologs
across species. In essence, alignment transforms raw sequence data
into biologically meaningful comparisons, providing the foundation
for most computational analyses of molecular biology.

Here is an example. Consider two short DNA sequences s =
ATACGTA and t = TATGATA. The goal of an alignment A(s, t) is to
arrange these sequences so that similar characters are aligned in
columns, while gaps (denoted by dashes) represent insertions or
deletions that occurred during evolution. A possible (perhaps not a
very good) alignment is:

s: ATACG-TA

11
t: TAT-GATA

Here, vertical bars indicate matches between the aligned bases.
The alignment reveals that the sequences share several conserved
positions, while one gap accommodates an insertion or deletion
event. Such visual representations help quantify sequence similarity
and form the basis for computational algorithms that compare genes
or proteins across species.

Here is another alignment of these two sequences:

s: ATACG-TA

NN
t: -TATGATA

Formally, an alignment of sequences s and t can be represented as
A(s,t) = (x,y), where x and y are the aligned versions of s and ¢,
respectively. Each position in x and y contains either a symbol from
the alphabet (e.g., A, C, G, T) or a gap, and removing the gaps recovers
the original sequences.

Which of the above alignments is better? It depends. :)

Alignment Scoring

To decide which alignment we like best, we need to define an scor-
ing function over the alignment. Let us denote this function as
M(A(s, t)). The simplest, and surprisingly the most common way
to define the scoring, is to break it down to alignment constituents,
that is, defined the function over all aligned positions:

on

Il
—

M(A(s, 1)) =) o(xi,yi),

SEQUENCE ALIGNMENT

where L is the alignment length, and o (x;, y;) is the per-symbol scoring
function that assigns a numerical value depending on whether the
aligned characters at position i are a match, mismatch, or gap.

Typical choices for o(x;,y;) include positive scores for matches,
negative scores for mismatches, and penalties for gaps. Say,

-2, ifa=-orb=-,
o(a,b) =< -1, ifa#banda,b # -,
+2, ifa=".

The optimal alignment is the one that maximizes M(A(s,t)) ac-
cording to the chosen scoring scheme. With two alignments above,
and using this scoring function, the alignment score for the first
alignment is —1, and for the second alignment 45 (see Table 3). Of
the two alignments, we would prefer the second one.

Position x;(s) y; () o (x;, yi) Explanation Table 3: Step-by-step scoring of the
A _) gap in t alignment A(s, t).

2 T T +2 match

3 A A +2 match

4 C T -1 mismatch

5 G G +2 match

6 - A -2 gapins

7 T T +2 match

8 A A +2 match

Total: M(A(s,t)) = +5

Walks Through Alignment Tables

We can start with thinking of how to systematically search through
different alignments. A search table will do. Consider an example, a
sequence s = ATGA and a sequence t = TCA, and their alignment

s: - AT - G A
t: T - C A - -

We have to admit that this alignment does not look good in terms
of score, but it is still a valid one. It can be obtained through a traver-
sal of the alignment table shown in Table 4. In this table, we start
in the upper-left corner and must finish in the lower-right corner.
The allowed moves are to the cell on the right, which corresponds to
taking a symbol from one sequence (say, t); to the cell below, which
corresponds to taking a symbol from the other sequence (say, s); or to
the cell diagonally down-right, which corresponds to taking symbols
from both sequences and aligning them. Notice that moving right

63

64 INTRODUCTION TO BIOINFORMATICS

or down introduces an insertion or deletion (indel) into one of the

sequences.
- T C A Table 4: A possible traversal of the
T @ alignment table for the sequences
s = ATGA and { = TCA. The numbers
A (2) indicate the consecutive steps we take
T (3) (4) in the table, with (o) indicating a start
position and (6) a final position in our
G (5) alignment walk.
A (6)

We can now score the positions of the alignment, and get —11 for
an alignment score.

s:i - AT - G A
t: T - C A - -
-2 -2 -1 -2 -2 -2
Notice that a different alignment results from a different walk in

the alignment table. Consider the following alignment with a walk
from a Table 5:

s:- AT G A - - -
t: T - - - - - C A

- T C A Table 5: Another possible traversal of
© () the alignment table for the sequences
R L s = ATGA and t = TCA.
A)
T €)
G 4)
A (5)) @

The scoring of the positions in this alignment is shown below,
with the final total score of —14, which is even worse than that of our
previous alignment:

s:- AT G A - - -
t: T - - - - - C A
22092 -2 -2 -2 -2 -2 -2

However, notice something important: the two alignments share
the same initial part of the walk. Up to position (2), both walks are
identical, and therefore the score up to that point (which is —4) is
the same as well. Once we have computed the score for a particu-
lar portion of the walk, there is no need to recompute it if another
alignment shares that portion:

st - A|T - G A

SEQUENCE ALIGNMENT 65

The total score of the alignment up to the position marked with
| is —4 for both walks. The realization that shared parts of the walk
need to be computed only once leads to a very efficient alignment
scoring algorithm—and, ultimately, to an algorithm that can find the
highest-scoring alignment.

A Search for the Best Alignment

Given two biological sequences, our goal is to find the alignment
that achieves the highest possible score according to a chosen scor-
ing scheme. In principle, one could generate all possible alignments
of the two sequences, compute their scores, and select the best one.
However, this exhaustive approach quickly becomes infeasible even
for short sequences. For instance, when each sequence has only ten
symbols, there are already on the order of 1.9 x 10° possible align-
ments, and for sequences of length twenty, this number explodes to
more than 10'!. A more efficient method is required.

Formally, let A(s, t) denote the set of all possible alignments be-
tween sequences s and f. For any alignment A € A(s,), let M(A)
represent its alignment score. The optimal alignment, denoted by
A*(s, t), is the alignment that maximizes the scoring function:

A*(s,) = M(A), M(A*) = M(A),
(s,t) = arg Amax (A) (A%) Amax (A)

so that for all possible alignments A,
M(A™) > M(A).

A key observation, stemming from our alignment walks above, is
that an optimal alignment of two sequences can be built incrementally.
Suppose we have already computed the best possible alignment for
the prefixes of the two sequences up to certain positions. When we
extend these prefixes by one additional symbol (or introduce a gap),
the best alignment for the longer prefixes can be obtained directly
from these previously computed partial results. In other words, the
problem exhibits an optimal substructure: the optimal solution to the
whole problem can be constructed from the optimal solutions to its
smaller subproblems.

This insight leads naturally to the Needleman-Wunsch algorithm,

a dynamic programming method that systematically computes the The Needleman-Wunsch algorithm was
introduced by Saul B. Needleman and
Christian D. Wunsch in 1970 (Journal of
Molecular Biology) and was the first dy-
namic programming method for global
sequence alignment. It guarantees
finding the optimal alignment between
two sequences according to a defined
scoring scheme and laid the foundation
for modern bioinformatics.

66 INTRODUCTION TO BIOINFORMATICS

best possible alignment score by filling in a matrix of partial results.
We refer to this matrix as the dynamic programming table. Each cell
of the table, denoted by M;j, represents the best possible alignment
score between the prefixes s1s; ... s; of the first sequence and 115 .. . t;
of the second sequence.

The value of M;; is computed recursively from the neighbor-
ing cells, based on whether the last step in the alignment was a
match/mismatch, a gap in s, or a gap in t:

Mifl,j;l + o (s, tj), (align s; with t])
Mjj =max § M; 1,j+0(s;,-), (gapint)
M;ji1+0o(-t), (gap in s).

The first row and column of the matrix are initialized with cumu-
lative gap penalties, and the final cell M,;, (wWhere m and # are the
lengths of the sequences) gives the score of the optimal global align-
ment. It also helps us if we remember which of the three moves is the
one we took to get the maximum value at each particular cell.

- T C A Table 6: Dynamic programming table
N N 73 with scores M;; for s = ATGA and
e 2 4 t = TCA.
A|l-2 -1 -3 -1
T|-4 o -2 -2
G|-6 -2 -1 -3
Al-8 4 3 -1

Consider the dynamic programming table for the alignment of our
two sequences (Table 6). The numbers marked in bold indicate a path
we take for optimal alignment. Based on the optimal walk through
this table, we find that the optimal alignment is

s: A

0O — o
> — >

T

|
t: - T
and its score is +1.

It is important to note that, in some cases, more than one move
may yield the same optimal value for a given cell in the dynamic
programming table. Such ties indicate that multiple paths can lead
to the same overall alignment score. Consequently, there may exist
several distinct alignments that all achieve the optimal score. In prac-
tice, one of these paths can be chosen arbitrarily when tracing back

through the table, since all represent equally optimal solutions under
the given scoring scheme.

A Note on Dynamic Programming

Dynamic programming, a term coined by Richard Bellman in the
1950s, is named to describe a method of solving complex problems
by breaking them down into simpler subproblems. Bellman chose the
term "dynamic programming" for strategic reasons. At the time, he
was working with the U.S. government, where the word "program-
ming" was a popular term and had positive associations, particularly
in operations research and planning. By adding "dynamic," he aimed
to emphasize the method’s focus on time-evolving processes, as the
problems it addressed often involved sequences of decisions over
time.

In dynamic programming, solutions to subproblems are stored
(or "memorized") to avoid redundant calculations, which makes it
particularly efficient for problems with overlapping subproblems, like
shortest path, sequence alignment, and optimization problems. The
approach dynamically combines solutions to smaller subproblems
to build up the solution to the original, larger problem, leading to a
highly structured and systematic way of tackling complex problems.

Local Alignment

While the Needleman-Wunsch algorithm searches for the best global
alignment between two complete sequences, many biological prob-
lems require identifying regions of local similarity instead. For ex-
ample, two proteins may share only one conserved domain or motif,
while the rest of their sequences differ substantially. The goal of local
alignment is therefore to find the pair of subsequences that produce
the highest alignment score, rather than aligning the sequences end
to end. This approach was formalized by Smith and Waterman in
1981, who modified the dynamic programming formulation to reset
negative scores to zero, ensuring that only high-scoring local regions
are extended. Local alignment is particularly useful for database
searches and for detecting conserved functional regions within other-
wise unrelated sequences.

The recurrence relation for the local alignment score is defined as:

0, (start a new alignment)

M;_1,j-1+0(s;,tj), (match or mismatch)
M;j = max

Mi—l,j + O'(SZ', -), (gap in t)

M;j1+0(-t), (gap in s).

SEQUENCE ALIGNMENT 67

Bellman, R. (1952). On the Theory of
Dynamic Programming. Proc. of the
National Academy of Sciences of the USA,
38(8), 716-719.

Needleman and Wunsch were aware
of Richard Bellman’s work on dynamic
programming and based their method
directly on his principle of optimality.
They were the first to apply dynamic
programming to biological sequence
alignment, which made their 1970
paper so influential.

Smith and Waterman built directly on
the Needleman-Wunsch algorithm.

In their 1981 paper (J. Mol. Biol.),

they added a simple zero term to the
recurrence, converting global alignment
into local alignment and enabling
detection of high-scoring subsequence
matches.

68 INTRODUCTION TO BIOINFORMATICS

By including the zero term, the algorithm discards regions with
negative cumulative scores and effectively identifies the highest-
scoring subsequence pair. The maximum value in the matrix corre-
sponds to the optimal local alignment score, and a traceback starting
from that cell reveals the aligned region.

Here is an example. Consider two sequences, s = ACCTGAA and ¢ =
CGTGACG, and the scoring function:

+2, ifa=p,
o(a,b) =< -1, ifa#b,
-2, ifa=-orb=-.

Applying the Smith-Waterman algorithm gives the dynamic
programming table shown in Table 7. The maximum value in the
table (8) corresponds to the best local alignment between the two

sequences.
- C G T G A C G

-lo o o o o o o O

Alo o o o o 2 o0 o

Clo 2 o o o o 4 2

cClo 2 1 0 0o 0 2 3

Tlo o 1 3 1 0 0 1

G|lo o 2 1 5 3 1 2

Alo o o 1 3 7 5 3

Alo o o o 1 5 6 4

The highest-scoring cell (in bold) has a value of 7, marking the end
of the best local alignment. Tracing back from that cell reveals the
following aligned subsequences:

st ACCTGAA

L
t: CGTGACG

Thus, the Smith—-Waterman algorithm identifies the local region
CCTGA in s and CGTGA in t as the best-matching subsequences, with an
optimal local alignment score of 7.

An Example: Longest Common Subsequence

Let us now diverge a bit, and instead of alignments use dynamic pro-
gramming for a similar problem of finding the longest common sub-
sequence. The longest common subsequence (LCS) of two sequences
is the longest sequence that appears in both of them in the same or-
der, but not necessarily contiguously. For example, for s = ACDBE

Table 7: Dynamic programming table
for local alignment of s = ACCTGAA and
t = CGTGACG. The bold numbers indicate
the cells on an optimal local-alignment
path.

SEQUENCE ALIGNMENT

and t = ABCDE, the longest common subsequence is ACDE, which has
length four. The LCS problem captures the idea of sequence similar-
ity without considering insertions, deletions, or substitutions explic-
itly, and serves as a simplified model for understanding alignment
algorithms.

We first need to define the scoring mechanism for traversal of the
dynamic programming table. We do not gain in the length of the
longest common subsequence if we take only a symbol from one of
the sequences, but we gain a length of 1 if we take symbols from both
sequences and they are equal. This can be expressed using a simple
scoring function

1, ifa=19,
o(a,b) =
0, ifa#b.

The recurrence relation for computing the entries of the dynamic
programming table is then

M;_1,j1+0(s;itj), (take both symbols)
M;jj = max ¢ M;_q j, (skip a symbol from s)
M; -1, (skip a symbol from t).

Now to the code. We first define the scoring function:

def score(a, b):
return 1 if a == b else 0

This was easy. Now, the main algorithm, the construction of the
dynamic programming table. We use a trick: besides computing the
scores we will also remember the neighboring cells (up and to the
left) from which these scores originated. This will allow us to trace
back for the solution of the problem:

def longest_common_subsequence(s, t):
M = defaultdict(int)
P={}
for i, si in enumerate(s):
for j, tj in enumerate(t):
M[i, j1, P[i, j1 = max(
(M[i-1, j1, (i-1, 3)),
(M[i, j-11, (i, j-1)),
(M[i-1, j-1] + score(si, tj), (i-1, j-1))
)

return M, P

After filling in the dynamic programming table M, we must re-
cover the actual longest common subsequence by retracing the path

69

70 INTRODUCTION TO BIOINFORMATICS

of decisions that led to the optimal score. We do this by following the
pointers stored in P, which indicate which previous cell contributed
to the current maximum:

def trace_back(s, t, M, P):

i = len(s)-1
j = len(t)-1
result = ""

while M[i, j] !'= 0:
if P[i, jl==(1i -1, j - 1):
result = s[i] + result
i, J = P[1i,]]
return result

Finally, we can run the algorithm on two example sequences and

display the result:
s = "AACCTTGG"
t = "ACACTGTGA"

table, previous = longest_common_subsequence(s, t)
substring = trace_back(s, t, table, previous)

print(f"Longest common subsequence: {substring}")
print(f"Length: {table[len(s) - 1, len(t) - 11}")

The program outputs:

Longest common subsequence: AACTTG
Length: 6

It works! This example demonstrates how dynamic programming
can efficiently recover not only the score but also the actual subse-
quence representing the shared structure between two sequences.
The reader can now extend the code to output the actual dynamic
programming table, show its entries and highlight the optimal path.

Alignment with Affine Gap Penalties

So far, we have assumed that each gap in an alignment incurs a linear
penalty proportional to its length. However, in biological sequences,
it is often more realistic to distinguish between the cost of opening a
gap and the cost of extending it. Introducing a new gap typically re-
flects a separate mutational event and should therefore be penalized
more heavily than simply extending an existing one.

To capture this, we define an affine gap penalty function:

7(8) = —(p+exx),

where p is the cost of opening a gap, ¢ is the cost of extending a gap
by one symbol, and x is the length of the gap. For example, if p =

SEQUENCE ALIGNMENT

5and ¢ = 1, then a gap of length three would have a penalty of
—(543 x 1) = —8. This scheme penalizes multiple short gaps more
severely than a single long one, which better reflects biological reality.

A simple dynamic programming table, as used in the Needle-
man-Wunsch algorithm, is insufficient for affine gap penalties. That
approach assumes that each cell depends only on the immediately
adjacent cells (diagonal, above, and left). With affine gaps, however,
we must distinguish between whether we are continuing a gap or
starting a new one. This requires keeping track of the direction from
which we arrived at each cell.

To handle this, we maintain three separate dynamic programming
matrices:

Mt (gap in t — moving down),
M;; (match or mismatch — moving diagonally),
M;;" (gap in s — moving right).

Each of these matrices represents the best possible score of an
alignment ending at position (7, j) under the given condition. Their
recurrences are defined as follows:

.—e¢, (extend a gapint)
Mf] = max
M;_1,; —p, (openanew gap int)

M:_, —¢, (extend a gap in s)
Ml? = max !
M; j-1—p, (openanew gap ins)

M;_1,j-1+0(sitj), (match or mismatch)
M;; = max ij, (from a gap in t)

Mi?, (from a gap in s).

Together, these three matrices correctly account for affine gap
penalties, allowing the algorithm to distinguish between opening
and extending gaps while still guaranteeing an optimal alignment
through dynamic programming.

The traversal for finding the best alignment score now involves
moving across all three matrices rather than within a single one. At
each position (i, j), the algorithm considers transitions not only from
neighboring cells within the same matrix but also from correspond-
ing cells in the other two matrices. The optimal path, therefore, may
switch between Ml-]-, Ml.ij, and Ml-?, depending on whether the align-
ment continues a match, opens a new gap, or extends an existing

71

72 INTRODUCTION TO BIOINFORMATICS

one. The traceback procedure follows this combined path across the
three matrices, starting from the cell with the highest overall score
and reconstructing the optimal alignment by identifying, step by
step, which operation (match, gap opening, or gap extension) was
taken. This traversal is illustrated schematically in Figure 26.

Dfa peuc(t- Figure 26: An example of traversal
VA &, of the three dynamic programming
D tables for the alignment with affine gap
st penalties.

Aligning Protein Sequences

All the examples above included alignments of nucleotide (DNA or
RNA) sequences. This is often useful for studying genes and regu-
latory regions, whereas aligning of protein sequences can provide a
deeper understanding of biological function and evolution.

Protein sequences evolve more slowly at the amino acid level than
their corresponding nucleotide sequences. since multiple codons can
encode the same amino acid. As a result, proteins often retain de-
tectable similarity long after the underlying DNA sequences have di-
verged beyond recognition. Aligning protein sequences therefore al-
lows us to identify conserved structural and functional regions—such
as catalytic sites, binding motifs, or folding domains—that may be
invisible in nucleotide-level comparisons.

Protein alignments are especially valuable when comparing genes
from different species (homology detection), inferring evolution-
ary relationships, or annotating new genes based on known protein
families. They are also used in structural biology and drug discov-
ery to predict the function of uncharacterized proteins or to design
mutations that alter activity or stability. Aligning protein sequences,
however, introduces additional complexity: there are twenty amino
acids rather than four nucleotides, and not all mismatches are equally
likely or equally significant. To align proteins effectively, we must
define an appropriate scoring mechanism that reflects biochemical
and evolutionary relationships among amino acids.

Protein Substitution Matrices

Protein substitution matrices are essential in bioinformatics, particu-
larly for scoring alignments between protein sequences by assessing
the likelihood of amino acid substitutions that may have occurred
over time. BLOSUM (BLOcks SUbstitution Matrix), introduced by
Henikoff and Henikoff in 1992, is among the most widely used matri-
ces for this purpose. Derived from highly conserved protein regions,
BLOSUM matrices help detect similarity between protein sequences
by analyzing regions, or "blocks," that remain largely unchanged
across members of protein families.

The BLOSUM matrices were derived from data in the BLOCKS
database, which contained about 500 conserved regions, or "blocks,"
from approximately 200 protein families. Each block represented a
stable, functionally important region within a protein family that has
remained largely unchanged over evolutionary time. By focusing on
these conserved regions with minimal variation, researchers could
analyze meaningful substitutions that likely reflect evolutionary
relationships. This made the BLOCKS database an ideal resource
for deriving substitution scores that capture genuine evolutionary
patterns.

To create BLOSUM matrices, sequences within each block were
grouped, or "clustered," according to a specific similarity threshold.
Clustering in this context means that sequences within a block that
share more than the specified percentage of similarity (e.g., 62% for
BLOSUMS62) are grouped together as a single "cluster.” Substitutions
are then only counted between different clusters rather than within a
cluster, reducing the influence of closely related sequences and em-
phasizing broader evolutionary changes. By capturing substitutions
across clusters, BLOSUM matrices can better detect relationships in
distantly related proteins.

The process to derive a BLOSUM matrix involved several key
steps:

1. Sequences within each block were grouped according to the sim-
ilarity threshold, forming clusters for sequences above the thresh-
old.

2. Substitutions were then counted across these clusters. For each
amino acid substitution occurring between clusters, a substitution
frequency was recorded.

3. Finally, substitution scores were calculated using the log-odds
scoring formula for each amino acid pair i, j:

SEQUENCE ALIGNMENT 73

A protein family is a group of proteins
that share a common evolutionary ori-
gin, often reflected in similar structures,
functions, or sequence motifs.

74 INTRODUCTION TO BIOINFORMATICS

Table 8: BLOSUMG62 matrix.

A R N D C Q E G H I L K M F p S T W Y 14
A 4 -1 -2 =2 0 -1 -1 o -2 -1 -1 -1 -1 -2 -1 1 0o -3 -2 0
R | -1 5 0 -2 =3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N | -2 0 6 1 -3 0 0 0 1 -3 -3 0o -2 -3 -2 1 0o -4 -2 -3
D|-2 =2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 o -1 -4 -3 -3
C 0o -3 -3 -3 9 3 4 -3 3 -1 -1 -3 -1 -2 -3 -1 -1 -2 =2 -1
Q| -1 1 0 0 -3 5 2 =2 0 -3 -2 1 0 -3 -1 o -1 -2 -1 =2
E | -1 0 0 2 —4 2 5 =2 0o -3 -3 1 -2 -3 -1 0o -1 -3 -2 =2
G 0 -2 o -1 -3 -2 =2 6 -2 -4 -4 -2 -3 -3 -2 o -2 -2 -3 -3
H | -2 0 1 -1 -3 0 0 -2 § -3 3 -1 -2 -1 -2 -1 -2 =2 2 =3
r{-r -3 3 -3 -1 -3 -3 -4 -3 4 2 =3 1 o -3 -2 -1 -3 -1 3
rLf-1r -2 -3 -4 -1 -2 -3 -4 =3 2 4 =2 2 o -3 -2 -1 -2 -1 1
K| -1 2 0o -1 -3 1 1 -2 -1 -3 =2 5 -1 -3 -1 o -1 -3 -2 =2
M|-1 -1 -2 -3 -1 0o -2 -3 =2 1 2 -1 5 o -2 -1 -1 -1 -1 1
F|l-2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 —4 -2 =2 1 3 -1
Ppf-1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 =2
S 1 -1 1 0 -1 0 0 o -1 -2 =2 0o -1 -2 -1 4 1 -3 -2 =2
T 0 -1 o -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 =2 0
w| -3 3 4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 =3
y|-2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 =2 2 7 -1
%4

o
|
w
|
w
|
w
|
—_
|
N
|
N

-3 -3 3 1 -2 1 -1 -2 =2 0 -3 -1 4

. P(i,j)
S(l/]) —lOg P(l) P(]) (1)
Here, P(i, j) represents the observed probability of amino acid i
substituting for j, while P(i) and P(j) are the background prob-
abilities of each amino acid. Positive scores suggest substitutions
are more likely than chance, while negative scores indicate disfa-
vored substitutions.

Different BLOSUM matrices, like BLOSUM45, BLOSUMS62, and
BLOSUMSo, cater to different levels of similarity. Lower-numbered
BLOSUM matrices are suited for analyzing distantly related se-
quences, as they capture broader evolutionary trends. Higher-
numbered matrices are more appropriate for closely related se-
quences. Among them, BLOSUM62 has become widely used, as it
provides a balanced approach suitable for a range of sequence align-
ment tasks, including use in algorithms like BLAST.

PAM (Point Accepted Mutation) matrices, developed by Margaret
Dayhoff and colleagues, take a different approach. Unlike BLOSUM,
which is based on direct observations from protein blocks, PAM
matrices are derived from a theoretical model of evolutionary change,
focusing on closely related sequences. PAM1, the starting matrix,
represents a 1% divergence, meaning each amino acid has had a 1%
chance of mutating to another. Higher PAM matrices, like PAM250,
are extrapolated from PAM1, estimating amino acid changes over
more extended evolutionary periods.

The key differences between BLOSUM and PAM lie in their

methodologies and applications. BLOSUM matrices rely on observed
data from conserved protein regions and do not involve extrapola-
tion, making them ideal for identifying more distant relationships
between proteins. Conversely, PAM matrices are modeled on evolu-
tionary theory and use extrapolation, making them better suited for
closely related sequences in global alignments. Thus, while BLOSUM
is preferred for broader sequence similarity searches, PAM matrices
find their application in evolutionary studies requiring a focus on
closely related sequences.

BLAST

BLAST (Basic Local Alignment Search Tool) identifies regions of
similarity between sequences by comparing a query sequence to a
database of known sequences. Unlike global alignment algorithms,
which attempt to align entire sequences, BLAST uses local alignment,
focusing on finding high-similarity segments (subsequences) within
larger sequences. This approach is computationally efficient and well-
suited for detecting functional or evolutionary relationships across
genomic and protein data.

The BLAST algorithm works in three main phases: seeding, exten-
sion, and evaluation.

1. Seeding: The algorithm first breaks down the query sequence
into shorter words or "k-mers" of a fixed length (usually three
residues for proteins, eleven for nucleotides). These k-mers are
compared against all possible k-mers in the database. If the sim-
ilarity between the query k-mer and a database k-mer meets a
certain threshold score, it becomes a "seed" that may lead to a
high-scoring alignment.

2. Extension: For each seed match, BLAST extends the alignment in
both directions, calculating a score for each extension by adding
or subtracting points for matches, mismatches, and gaps based on
a scoring matrix (e.g., BLOSUM for proteins, which gives positive
scores to biologically likely substitutions). This process continues
until the alignment score drops below a threshold, meaning no
further extension would improve the alignment. The resulting
segments, known as high-scoring segment pairs (HSPs), represent
local regions of high similarity between the query and database
sequence.

3. Evaluation and Ranking (E-value calculation): The significance of
each HSP is assessed using a statistical measure called the E-value,
or "expect” value. The E-value estimates the number of alignments

SEQUENCE ALIGNMENT

BLAST was introduced by Altschul
and colleagues in Journal of Molecular
Biology (1990) and revolutionized
bioinformatics by making large-scale
sequence similarity searches both fast
and practical.

75

76 INTRODUCTION TO BIOINFORMATICS

with a score equal to or greater than the observed score that could
be expected by chance when searching a database of a given size.
It’s calculated using the formula:

E=Kxmxnxe

where:

e Kand A are statistical parameters dependent on the scoring
system and sequence composition.

e m and n are the lengths of the query and database sequences,
respectively.

e S is the raw alignment score of the HSP.

This formula is based on the extreme value distribution (EVD),
which models the probability of obtaining an alignment score S
by chance. Lower E-values indicate more significant alignments.
For example, an E-value close to zero suggests the alignment is
unlikely to be random, hinting at a meaningful biological relation-
ship.

By efficiently identifying and ranking local similarities, BLAST
allows researchers to filter out biologically relevant hits from ran-
dom alignments. Its computational efficiency and effectiveness have
made it a cornerstone in bioinformatics, used for everything from
annotating gene sequences to exploring evolutionary relationships.

Multiple Sequence Alignment

A popular technique and a software tool that implements a heuristic
approach to multiple sequence alignment is CLUSTAL. The term
CLUSTAL derived from “cluster alignment,” reflecting the soft-
ware’s purpose of clustering and aligning multiple sequences. The
name emphasizes its function in performing multiple sequence align-
ment by progressively clustering sequences based on their similarity.
CLUSTAL works through a series of steps, typically following a pro-
gressive alignment approach:

1. Pairwise Alignment: First, CLUSTAL calculates pairwise align-
ment scores for all pairs of sequences using methods such as
Needleman-Wunsch (for global alignment) or Smith-Waterman
(for local alignment). These scores quantify how similar each se-
quence pair is.

2. Guide Tree Construction: CLUSTAL then uses these pairwise
alignment scores to build a guide tree, often by a method such as

CLUSTAL was introduced by Higgins
and Sharp in Computer Applications in
the Biosciences (1988), the journal that is
now know as Bioinformatics and became
one of the most widely used tools for
multiple sequence alignment, setting
the standard for comparative sequence
analysis.

the neighbor-joining algorithm (more on this in the next chapter).
This tree reflects the evolutionary relationships between sequences
based on their similarity scores, determining the order in which
sequences will be aligned.

3. Progressive Alignment: Using the guide tree, CLUSTAL progres-
sively aligns sequences from most to least similar, starting with
closely related pairs and gradually aligning less similar ones. At
each step, previously aligned groups are treated as single units or
"profiles" to ensure consistency across the alignment.

An important advancement came with CLUSTAL W. This version
significantly improved alignment sensitivity by introducing sequence
weighting, position-specific gap penalties, and flexible scoring matri-
ces. These innovations made CLUSTAL W one of the most accurate
and widely adopted tools for multiple sequence alignment and estab-
lished the foundation for many modern alignment programs.

What's Next?

From alignments, we move toward the broader picture of evolution.
Once we can align sequences and quantify their similarity, we can
begin to ask deeper questions: Which genes share common ancestry?
How closely related are different species? And how can we represent
these relationships visually? In the next chapter, we will build on

the foundations of sequence alignment to group similar sequences
through clustering, reconstruct evolutionary trees using algorithms
such as neighbor joining, and visualize these results to reveal pat-
terns of divergence and common origin. In doing so, we will trans-
form raw sequence data into a map of life’s history—an evolutionary
network connecting genes, proteins, and species.

SEQUENCE ALIGNMENT 77

The CLUSTAL W algorithm (Nucleic
Acids Research, 1994) greatly improved
multiple sequence alignment through
sequence weighting, position-specific
gap penalties, and refined substitution
matrices, setting a new benchmark for
accuracy and robustness.

