
Sequence Alignment Methods

Before we can understand how genes evolve and how their functions
relate across organisms, we must first learn how to compare biolog-
ical sequences in a meaningful way. The comparison of DNA, RNA,
and protein sequences lies at the heart of modern bioinformatics,
providing the basis for discovering evolutionary relationships, identi-
fying functional regions, and annotating newly sequenced genomes.
Sequence alignment is the systematic arrangement of sequences to
reveal their similarities and differences. It serves as the foundation
for nearly every computational analysis in molecular biology.

Evolution

In 1973, evolutionary biologist Theodosius Dobzhansky famously
declared that “nothing in biology makes sense except in the light of
evolution.” . This statement places evolutionary theory at the cen- Dobzhansky T, Am. Biol. Teacher 35,

125–129 (1973)ter of unifying all aspects of biological science. Evolution provides
the framework through which the diversity of life, the complexity
of organisms, and the relationships among species can be under-
stood. From molecular genetics to ecology, every biological obser-
vation gains coherence when viewed as part of an ongoing process
of change driven by variation, inheritance, and natural selection.
Without evolution, the facts of biology would remain isolated and
inexplicable, with it, they form an integrated picture of life’s history
and its continuous adaptation to a changing world.

Evolution is the process by which populations of organisms The concept of evolution predates
Darwin, with early ideas of species
change proposed by naturalists like
Jean-Baptiste Lamarck (1809). However,
it was Charles Darwin’s On the Origin
of Species (1859) that unified these ideas
with a coherent mechanism—natural
selection—supported by extensive
evidence. Modern evolutionary biology
integrates genetics, paleontology, and
molecular biology to describe how life
has evolved over billions of years.

change over generations through variation (mutations of their genome),
inheritance, and selection. Random mutations introduce genetic di-
versity, while natural selection favors variants that enhance survival
or reproduction. Over time, these gradual changes accumulate, pro-
ducing the diversity of life observed today. "Over time" here is actu-
ally an understatement. Evolution had billions of years in order to
shape the life as we know it (Table 2).

Historically, evolution was studied by comparing the morphology,
that is, the form and structure of organisms. Evolutionary biologists



60 introduction to bioinformatics

Time (approx.) Event
4.54 Ga Formation of Earth
4.0–3.8 Ga Earliest evidence of life (simple microbial activity)
3.5 Ga Emergence of bacteria and prokaryotic cells
2.5–2.0 Ga Rise of atmospheric oxygen
2.1–1.8 Ga Appearance of eukaryotic cells
1.2 Ga Emergence of multicellular organisms
700–600 Ma First animals (sponges and soft-bodied forms)
500–475 Ma First plants colonize land
525–500 Ma Appearance of vertebrates (jawless fish)
400–360 Ma Transition of vertebrates to land (amphibians)
200–150 Ma Evolution of early mammals alongside dinosaurs
7–6 Ma Emergence of hominins (early human ancestors)
300–200 ka Appearance of modern humans (Homo sapiens)

Table 2: Key events in the history of
Earth and life (Ga = billion years ago;
Ma = million years ago; ka = thousand
years ago).

examined fossils, bones, and visible traits of organisms, and com-
pared these to relate them, finding similarities and differences. With
advances in molecular biology, scientists began comparing proteins
and DNA sequences, enabling much finer resolution. Computational
models, statistical inference, and phylogenetic trees now allow the
reconstruction of evolutionary relationships from molecular data.

Gene sequences record the history of evolution at the molecular
level. Mutations accumulate over time, leaving detectable patterns of
similarity and difference among species. By analyzing these patterns
computationally, researchers can infer common ancestry, estimate
divergence times, and even predict evolutionary pressures.

Homology

In evolutionary biology and bioinformatics, homologous genes are Evolutionary biology is the branch of
biology that studies the origin, change,
and diversification of species over time
through mechanisms such as mutation,
selection, gene flow, and genetic drift.

genes that share a common ancestral origin. They can be classified
into two main types: orthologs and paralogs. Orthologous genes
arise from a speciation event, meaning they are found in different
species but originated from a single gene in the last common ances-
tor. These genes typically retain the same function across species,
making them key for inferring evolutionary relationships and con-
structing phylogenetic trees. In contrast, paralogous genes result
from a gene duplication event within a genome and may evolve new
or specialized functions over time.

Understanding homology—and distinguishing orthologs from
paralogs—is crucial in comparative genomics, because it allows
researchers to trace gene evolution, predict gene function across
species, and reconstruct the molecular history of life.

A classic example of orthologs is the hemoglobin β-chain gene



sequence alignment methods 61

in humans and the hemoglobin β-chain gene in whales (or, equiva-
lently, the myoglobin genes in both species). These genes descended
from the same ancestral gene in the last common ancestor of humans
and whales and retain similar oxygen-binding functions in their
respective species, illustrating how mammals adapted to different
environments while conserving core physiological mechanisms. An-
other striking case involves the Hox genes, which control body-plan
development in animals: the same basic set of Hox genes that pat-
terns the body of a fruit fly also guides limb and vertebrae formation
in humans.

Paralogs, by contrast, showcase how gene duplication propels in-
novation. Gene duplication is essentially a genetic accident. It occurs
when a segment of DNA is copied twice during replication or recom-
bination. While accidental, such duplications provide extra genetic
material that evolution can experiment with — one copy maintains
the original function, while the other is free to accumulate mutations
and potentially evolve new functions. For example, the human globin
genes—α-globin and β-globin—originated from a single ancestral
gene but duplicated and diverged to specialize in different parts of
the hemoglobin molecule, improving oxygen transport. Similarly, the
numerous olfactory receptor genes in humans and other mammals
arose from repeated duplications, allowing species to detect a wide
range of smells.

These examples illustrate how the study of homologous, orthol-
ogous, and paralogous genes reveals the deep evolutionary connec-
tions among organisms, and how gene duplication and divergence
drive the diversity of life’s molecular machinery. They also motivate
us to craft algorithmic means of finding these genes, that is, com-
paring the genetic sequences within the same and between different
organisms. The core techniques for sequence comparison are meth-
ods that study sequence alignment.

Sequence Alignments

To understand relationships between genes or proteins, we need a
systematic way to compare their sequences. Sequence alignment
is the process of arranging two or more DNA, RNA, or protein se-
quences to identify regions of similarity that may indicate functional,
structural, or evolutionary relationships. Alignments reveal where
nucleotides or amino acids correspond between sequences, account-
ing for possible insertions, deletions, or substitutions that occurred
over time.

Beyond evolutionary studies, sequence alignment underlies many
tasks in bioinformatics. These include predicting gene or protein



62 introduction to bioinformatics

function by similarity to known sequences, identifying coding re-
gions in genomes, assembling overlapping fragments in sequencing
projects, constructing phylogenetic trees, and searching for orthologs
across species. In essence, alignment transforms raw sequence data
into biologically meaningful comparisons, providing the foundation
for most computational analyses of molecular biology.

Here is an example. Consider two short DNA sequences s =

ATACGTA and t = TATGATA. The goal of an alignment A(s, t) is to
arrange these sequences so that similar characters are aligned in
columns, while gaps (denoted by dashes) represent insertions or
deletions that occurred during evolution. A possible (perhaps not a
very good) alignment is:

s: ATACG-TA

| ||

t: TAT-GATA

Here, vertical bars indicate matches between the aligned bases.
The alignment reveals that the sequences share several conserved
positions, while one gap accommodates an insertion or deletion
event. Such visual representations help quantify sequence similarity
and form the basis for computational algorithms that compare genes
or proteins across species.

Here is another alignment of these two sequences:

s: ATACG-TA

|| | ||

t: -TATGATA

Formally, an alignment of sequences s and t can be represented as
A(s, t) = (x, y), where x and y are the aligned versions of s and t,
respectively. Each position in x and y contains either a symbol from
the alphabet (e.g., A, C, G, T) or a gap, and removing the gaps recovers
the original sequences.

Which of the above alignments is better? It depends. :)

Alignment Scoring

To decide which alignment we like best, we need to define an scor-
ing function over the alignment. Let us denote this function as
M(A(s, t)). The simplest, and surprisingly the most common way
to define the scoring, is to break it down to alignment constituents,
that is, defined the function over all aligned positions:

M(A(s, t)) =
L

∑
i=1

σ(xi, yi),



sequence alignment methods 63

where L is the alignment length, and σ(xi, yi) is the per-symbol scoring
function that assigns a numerical value depending on whether the
aligned characters at position i are a match, mismatch, or gap.

Typical choices for σ(xi, yi) include positive scores for matches,
negative scores for mismatches, and penalties for gaps. Say,

σ(a, b) =


−2, if a = - or b = -,

−1, if a ̸= b and a, b ̸= -,

+2, if a = b.

The optimal alignment is the one that maximizes M(A(s, t)) ac-
cording to the chosen scoring scheme. With two alignments above,
and using this scoring function, the alignment score for the first
alignment is −1, and for the second alignment +5 (see Table 3). Of
the two alignments, we would prefer the second one.

Position xi (s) yi (t) σ(xi, yi) Explanation
1 A – −2 gap in t
2 T T +2 match
3 A A +2 match
4 C T −1 mismatch
5 G G +2 match
6 – A −2 gap in s
7 T T +2 match
8 A A +2 match

Total: M(A(s, t)) = +5

Table 3: Step-by-step scoring of the
alignment A(s, t).

Walks Through Alignment Tables

We can start with thinking of how to systematically search through
different alignments. A search table will do. Consider an example, a
sequence s = ATGA and a sequence t = TCA, and their alignment

s: - A T - G A

t: T - C A - -

We have to admit that this alignment does not look good in terms
of score, but it is still a valid one. It can be obtained through a traver-
sal of the alignment table shown in Table 4. In this table, we start
in the upper-left corner and must finish in the lower-right corner.
The allowed moves are to the cell on the right, which corresponds to
taking a symbol from one sequence (say, t); to the cell below, which
corresponds to taking a symbol from the other sequence (say, s); or to
the cell diagonally down-right, which corresponds to taking symbols
from both sequences and aligning them. Notice that moving right



64 introduction to bioinformatics

or down introduces an insertion or deletion (indel) into one of the
sequences.

- T C A

- (0) (1)
A (2)
T (3) (4)
G (5)
A (6)

Table 4: A possible traversal of the
alignment table for the sequences
s = ATGA and t = TCA. The numbers
indicate the consecutive steps we take
in the table, with (0) indicating a start
position and (6) a final position in our
alignment walk.

We can now score the positions of the alignment, and get −11 for
an alignment score.

s: - A T - G A

t: T - C A - -

-2 -2 -1 -2 -2 -2

Notice that a different alignment results from a different walk in
the alignment table. Consider the following alignment with a walk
from a Table 5:

s: - A T G A - - -

t: T - - - - - C A

- T C A

- (0) (1)
A (2)
T (3)
G (4)
A (5) (6) (7)

Table 5: Another possible traversal of
the alignment table for the sequences
s = ATGA and t = TCA.

The scoring of the positions in this alignment is shown below,
with the final total score of −14, which is even worse than that of our
previous alignment:

s: - A T G A - - -

t: T - - - - - C A

-2 -2 -2 -2 -2 -2 -2 -2

However, notice something important: the two alignments share
the same initial part of the walk. Up to position (2), both walks are
identical, and therefore the score up to that point (which is −4) is
the same as well. Once we have computed the score for a particu-
lar portion of the walk, there is no need to recompute it if another
alignment shares that portion:

s: - A | T - G A



sequence alignment methods 65

t: T - | C A - -

s: - A | T G A - - -

t: T - | - - - - C A

The total score of the alignment up to the position marked with
| is −4 for both walks. The realization that shared parts of the walk
need to be computed only once leads to a very efficient alignment
scoring algorithm—and, ultimately, to an algorithm that can find the
highest-scoring alignment.

A Search for the Best Alignment

Given two biological sequences, our goal is to find the alignment
that achieves the highest possible score according to a chosen scor-
ing scheme. In principle, one could generate all possible alignments
of the two sequences, compute their scores, and select the best one.
However, this exhaustive approach quickly becomes infeasible even
for short sequences. For instance, when each sequence has only ten
symbols, there are already on the order of 1.9 × 105 possible align-
ments, and for sequences of length twenty, this number explodes to
more than 1011. A more efficient method is required.

Formally, let A(s, t) denote the set of all possible alignments be-
tween sequences s and t. For any alignment A ∈ A(s, t), let M(A)

represent its alignment score. The optimal alignment, denoted by
A∗(s, t), is the alignment that maximizes the scoring function:

A∗(s, t) = arg max
A∈A(s,t)

M(A), M(A∗) = max
A∈A(s,t)

M(A),

so that for all possible alignments A,

M(A∗) ≥ M(A).

A key observation, stemming from our alignment walks above, is
that an optimal alignment of two sequences can be built incrementally.
Suppose we have already computed the best possible alignment for
the prefixes of the two sequences up to certain positions. When we
extend these prefixes by one additional symbol (or introduce a gap),
the best alignment for the longer prefixes can be obtained directly
from these previously computed partial results. In other words, the
problem exhibits an optimal substructure: the optimal solution to the
whole problem can be constructed from the optimal solutions to its
smaller subproblems.

This insight leads naturally to the Needleman–Wunsch algorithm,
a dynamic programming method that systematically computes the The Needleman–Wunsch algorithm was

introduced by Saul B. Needleman and
Christian D. Wunsch in 1970 (Journal of
Molecular Biology) and was the first dy-
namic programming method for global
sequence alignment. It guarantees
finding the optimal alignment between
two sequences according to a defined
scoring scheme and laid the foundation
for modern bioinformatics.



66 introduction to bioinformatics

best possible alignment score by filling in a matrix of partial results.
We refer to this matrix as the dynamic programming table. Each cell
of the table, denoted by Mij, represents the best possible alignment
score between the prefixes s1s2 . . . si of the first sequence and t1t2 . . . tj

of the second sequence.
The value of Mij is computed recursively from the neighbor-

ing cells, based on whether the last step in the alignment was a
match/mismatch, a gap in s, or a gap in t:

Mij = max


Mi−1, j−1 + σ(si, tj), (align si with tj)

Mi−1, j + σ(si, -), (gap in t)

Mi, j−1 + σ(-, tj), (gap in s).

The first row and column of the matrix are initialized with cumu-
lative gap penalties, and the final cell Mmn (where m and n are the
lengths of the sequences) gives the score of the optimal global align-
ment. It also helps us if we remember which of the three moves is the
one we took to get the maximum value at each particular cell.

- T C A

- 0 -2 -4 -6
A -2 -1 -3 -1
T -4 0 -2 -2
G -6 -2 -1 -3
A -8 -4 -3 -1

Table 6: Dynamic programming table
with scores Mij for s = ATGA and
t = TCA.

Consider the dynamic programming table for the alignment of our
two sequences (Table 6). The numbers marked in bold indicate a path
we take for optimal alignment. Based on the optimal walk through
this table, we find that the optimal alignment is

s: A T G A

| | |

t: - T C A

and its score is +1.
It is important to note that, in some cases, more than one move

may yield the same optimal value for a given cell in the dynamic
programming table. Such ties indicate that multiple paths can lead
to the same overall alignment score. Consequently, there may exist
several distinct alignments that all achieve the optimal score. In prac-
tice, one of these paths can be chosen arbitrarily when tracing back
through the table, since all represent equally optimal solutions under
the given scoring scheme.



sequence alignment methods 67

A Note on Dynamic Programming

Dynamic programming, a term coined by Richard Bellman in the
1950s, is named to describe a method of solving complex problems Bellman, R. (1952). On the Theory of

Dynamic Programming. Proc. of the
National Academy of Sciences of the USA,
38(8), 716–719.

by breaking them down into simpler subproblems. Bellman chose the
term "dynamic programming" for strategic reasons. At the time, he
was working with the U.S. government, where the word "program-
ming" was a popular term and had positive associations, particularly
in operations research and planning. By adding "dynamic," he aimed
to emphasize the method’s focus on time-evolving processes, as the
problems it addressed often involved sequences of decisions over
time.

In dynamic programming, solutions to subproblems are stored Needleman and Wunsch were aware
of Richard Bellman’s work on dynamic
programming and based their method
directly on his principle of optimality.
They were the first to apply dynamic
programming to biological sequence
alignment, which made their 1970

paper so influential.

(or "memorized") to avoid redundant calculations, which makes it
particularly efficient for problems with overlapping subproblems, like
shortest path, sequence alignment, and optimization problems. The
approach dynamically combines solutions to smaller subproblems
to build up the solution to the original, larger problem, leading to a
highly structured and systematic way of tackling complex problems.

Local Alignment

While the Needleman–Wunsch algorithm searches for the best global Smith and Waterman built directly on
the Needleman–Wunsch algorithm.
In their 1981 paper (J. Mol. Biol.),
they added a simple zero term to the
recurrence, converting global alignment
into local alignment and enabling
detection of high-scoring subsequence
matches.

alignment between two complete sequences, many biological prob-
lems require identifying regions of local similarity instead. For ex-
ample, two proteins may share only one conserved domain or motif,
while the rest of their sequences differ substantially. The goal of local
alignment is therefore to find the pair of subsequences that produce
the highest alignment score, rather than aligning the sequences end
to end. This approach was formalized by Smith and Waterman in
1981, who modified the dynamic programming formulation to reset
negative scores to zero, ensuring that only high-scoring local regions
are extended. Local alignment is particularly useful for database
searches and for detecting conserved functional regions within other-
wise unrelated sequences.

The recurrence relation for the local alignment score is defined as:

Mij = max



0, (start a new alignment)

Mi−1, j−1 + σ(si, tj), (match or mismatch)

Mi−1, j + σ(si, -), (gap in t)

Mi, j−1 + σ(-, tj), (gap in s).



68 introduction to bioinformatics

By including the zero term, the algorithm discards regions with
negative cumulative scores and effectively identifies the highest-
scoring subsequence pair. The maximum value in the matrix corre-
sponds to the optimal local alignment score, and a traceback starting
from that cell reveals the aligned region.

Here is an example. Consider two sequences, s = ACCTGAA and t =
CGTGACG, and the scoring function:

σ(a, b) =


+2, if a = b,

−1, if a ̸= b,

−2, if a = - or b = -.

Applying the Smith–Waterman algorithm gives the dynamic
programming table shown in Table 7. The maximum value in the
table (8) corresponds to the best local alignment between the two
sequences.

- C G T G A C G

- 0 0 0 0 0 0 0 0

A 0 0 0 0 0 2 0 0

C 0 2 0 0 0 0 4 2

C 0 2 1 0 0 0 2 3

T 0 0 1 3 1 0 0 1

G 0 0 2 1 5 3 1 2

A 0 0 0 1 3 7 5 3

A 0 0 0 0 1 5 6 4

Table 7: Dynamic programming table
for local alignment of s = ACCTGAA and
t = CGTGACG. The bold numbers indicate
the cells on an optimal local-alignment
path.

The highest-scoring cell (in bold) has a value of 7, marking the end
of the best local alignment. Tracing back from that cell reveals the
following aligned subsequences:

s: A C C T G A A

| | | |

t: C G T G A C G

Thus, the Smith–Waterman algorithm identifies the local region
CCTGA in s and CGTGA in t as the best-matching subsequences, with an
optimal local alignment score of 7.

An Example: Longest Common Subsequence

Let us now diverge a bit, and instead of alignments use dynamic pro-
gramming for a similar problem of finding the longest common sub-
sequence. The longest common subsequence (LCS) of two sequences
is the longest sequence that appears in both of them in the same or-
der, but not necessarily contiguously. For example, for s = ACDBE



sequence alignment methods 69

and t = ABCDE, the longest common subsequence is ACDE, which has
length four. The LCS problem captures the idea of sequence similar-
ity without considering insertions, deletions, or substitutions explic-
itly, and serves as a simplified model for understanding alignment
algorithms.

We first need to define the scoring mechanism for traversal of the
dynamic programming table. We do not gain in the length of the
longest common subsequence if we take only a symbol from one of
the sequences, but we gain a length of 1 if we take symbols from both
sequences and they are equal. This can be expressed using a simple
scoring function

σ(a, b) =

1, if a = b,

0, if a ̸= b.

The recurrence relation for computing the entries of the dynamic
programming table is then

Mij = max


Mi−1, j−1 + σ(si, tj), (take both symbols)

Mi−1, j, (skip a symbol from s)

Mi, j−1, (skip a symbol from t).

Now to the code. We first define the scoring function:

def score(a, b):

return 1 if a == b else 0

This was easy. Now, the main algorithm, the construction of the
dynamic programming table. We use a trick: besides computing the
scores we will also remember the neighboring cells (up and to the
left) from which these scores originated. This will allow us to trace
back for the solution of the problem:

def longest_common_subsequence(s, t):

M = defaultdict(int)

P = {}

for i, si in enumerate(s):

for j, tj in enumerate(t):

M[i, j], P[i, j] = max(

(M[i-1, j], (i-1, j)),

(M[i, j-1], (i, j-1)),

(M[i-1, j-1] + score(si, tj), (i-1, j-1))

)

return M, P

After filling in the dynamic programming table M, we must re-
cover the actual longest common subsequence by retracing the path



70 introduction to bioinformatics

of decisions that led to the optimal score. We do this by following the
pointers stored in P, which indicate which previous cell contributed
to the current maximum:

def trace_back(s, t, M, P):

i = len(s)-1

j = len(t)-1

result = ""

while M[i, j] != 0:

if P[i, j] == (i - 1, j - 1):

result = s[i] + result

i, j = P[i, j]

return result

Finally, we can run the algorithm on two example sequences and
display the result:

s = "AACCTTGG"

t = "ACACTGTGA"

table, previous = longest_common_subsequence(s, t)

substring = trace_back(s, t, table, previous)

print(f"Longest common subsequence: {substring}")

print(f"Length: {table[len(s) - 1, len(t) - 1]}")

The program outputs:

Longest common subsequence: AACTTG

Length: 6

It works! This example demonstrates how dynamic programming
can efficiently recover not only the score but also the actual subse-
quence representing the shared structure between two sequences.
The reader can now extend the code to output the actual dynamic
programming table, show its entries and highlight the optimal path.

Alignment with Affine Gap Penalties

So far, we have assumed that each gap in an alignment incurs a linear
penalty proportional to its length. However, in biological sequences,
it is often more realistic to distinguish between the cost of opening a
gap and the cost of extending it. Introducing a new gap typically re-
flects a separate mutational event and should therefore be penalized
more heavily than simply extending an existing one.

To capture this, we define an affine gap penalty function:

γ(g) = −(ρ + ε × x),

where ρ is the cost of opening a gap, ε is the cost of extending a gap
by one symbol, and x is the length of the gap. For example, if ρ =



sequence alignment methods 71

5 and ε = 1, then a gap of length three would have a penalty of
−(5 + 3 × 1) = −8. This scheme penalizes multiple short gaps more
severely than a single long one, which better reflects biological reality.

A simple dynamic programming table, as used in the Needle-
man–Wunsch algorithm, is insufficient for affine gap penalties. That
approach assumes that each cell depends only on the immediately
adjacent cells (diagonal, above, and left). With affine gaps, however,
we must distinguish between whether we are continuing a gap or
starting a new one. This requires keeping track of the direction from
which we arrived at each cell.

To handle this, we maintain three separate dynamic programming
matrices:

M↓
ij (gap in t — moving down),

Mij (match or mismatch — moving diagonally),

M→
ij (gap in s — moving right).

Each of these matrices represents the best possible score of an
alignment ending at position (i, j) under the given condition. Their
recurrences are defined as follows:

M↓
ij = max

M↓
i−1, j − ε, (extend a gap in t)

Mi−1, j − ρ, (open a new gap in t)

M→
ij = max

M→
i, j−1 − ε, (extend a gap in s)

Mi, j−1 − ρ, (open a new gap in s)

Mij = max


Mi−1, j−1 + σ(si, tj), (match or mismatch)

M↓
ij, (from a gap in t)

M→
ij , (from a gap in s).

Together, these three matrices correctly account for affine gap
penalties, allowing the algorithm to distinguish between opening
and extending gaps while still guaranteeing an optimal alignment
through dynamic programming.

The traversal for finding the best alignment score now involves
moving across all three matrices rather than within a single one. At
each position (i, j), the algorithm considers transitions not only from
neighboring cells within the same matrix but also from correspond-
ing cells in the other two matrices. The optimal path, therefore, may
switch between Mij, M↓

ij, and M→
ij , depending on whether the align-

ment continues a match, opens a new gap, or extends an existing



72 introduction to bioinformatics

one. The traceback procedure follows this combined path across the
three matrices, starting from the cell with the highest overall score
and reconstructing the optimal alignment by identifying, step by
step, which operation (match, gap opening, or gap extension) was
taken. This traversal is illustrated schematically in Figure 26.

Figure 26: An example of traversal
of the three dynamic programming
tables for the alignment with affine gap
penalties.

Multiple Sequence Alignment

Pairwise alignment methods, such as the Needleman–Wunsch and
Smith–Waterman algorithms, form the basis of comparing two se-
quences optimally. However, many biological analyses require com-
paring whole families of sequences simultaneously. Extending these
ideas to three or more sequences leads to the problem of multiple
sequence alignment, which generalizes pairwise alignment but in-
troduces new computational challenges. Such comparisons may
consider different versions of a gene across species or members of a
protein family within the same organism. To reveal regions that have
remained similar over time and to understand how the sequences
relate evolutionarily, we align all of them together in what is called a
multiple sequence alignment.

A multiple sequence alignment arranges three or more sequences
in a table so that symbols with a shared evolutionary origin appear in
the same column. For example:

s1: A T - G C A

s2: A T G G - A

s3: A T T G C A

This alignment highlights conserved positions (“A–T–G–A”) and re-
gions that have changed through mutations, insertions, or deletions.

The Needleman–Wunsch algorithm can, in principle, be ex-
tended to align more than two sequences. Instead of filling a two-
dimensional dynamic programming table, we would construct a table



sequence alignment methods 73

with one dimension for each sequence, where each cell represents the
best alignment score for the corresponding prefixes of all sequences.
For three sequences, this becomes a three-dimensional cube; for four,
a four-dimensional hypercube, and so on. Each additional sequence
therefore adds another dimension to the computation. The number of
possible paths through this multidimensional table grows exponen-
tially, requiring both time and memory on the order of O(nk), where
n is the sequence length and k is the number of sequences. While this
exact dynamic programming approach guarantees an optimal multi-
ple sequence alignment, it quickly becomes impractical. As a result,
nearly all practical methods rely on heuristics or approximations that
trade exact optimality for tractable computation.

Because exact multiple sequence alignment by dynamic program-
ming is computationally infeasible for more than a few short se-
quences, practical methods rely on heuristics that approximate the
optimal result. One of the most common strategies is progressive
alignment. Instead of aligning all sequences at once, the algorithm
builds the alignment step by step. First, all pairs of sequences are
aligned to estimate their similarities, which are then used to construct
a guide tree representing their approximate relationships. The two The construction of the guide tree relies

on pairwise sequence similarities and
forms the basis for clustering algo-
rithms such as neighbor joining, which
can infer phylogenetic relationships
among sequences. We will explore
these methods in a later chapter.

most similar sequences are aligned first, and the resulting alignment
is treated as a single entity called a profile.

A profile summarizes each column of the current alignment by
recording how often each nucleotide or amino acid appears there.
When a new sequence is added, it is aligned against this profile
rather than against individual sequences, choosing the placement
that best matches the column frequencies. The process continues
until all sequences have been incorporated.

For example, given three DNA sequences

s1 = ATGA, s2 = ATGCA, s3 = ATGGA,

the algorithm might first align s1 and s2:

s1: A T G - A

s2: A T G C A

The resulting profile represents each column as a distribution of
residues (for instance, the fourth column has 50% gaps and 50% C).
The third sequence, s3, is then aligned against this profile to produce
the final multiple alignment.

The quality of such an alignment is often measured by the sum-
of-pairs score, which adds the scores of all pairwise comparisons
implied by the alignment. Columns with matching or chemically
similar residues contribute positively, while mismatches and gaps
reduce the total.



74 introduction to bioinformatics

An alternative, information-based measure uses entropy to quan-
tify conservation within each column:

H = −
k

∑
i=1

pi log2 pi,

where pi is the frequency of residue i and k is the alphabet size. A
completely conserved column, where all sequences have the same
residue, has H = 0; a highly variable one has higher entropy. For
example, if 8 out of 10 residues in a column are A and 2 are G, then
H ≈ 0.72.

Low-entropy columns signal conserved, biologically important re-
gions, while high-entropy columns mark variable positions. Together,
these scoring schemes provide complementary ways to evaluate the
quality of a multiple sequence alignment, balancing sequence similar-
ity with biological relevance.

Multiple sequence alignments provide the foundation for many
downstream analyses in bioinformatics. They are used to identify
conserved motifs that indicate important structural or functional
sites, to build phylogenetic trees that reconstruct evolutionary re-
lationships, and to generate profiles or hidden Markov models for
sequence classification. High-quality alignments are thus critical in-
puts for comparative genomics, structural prediction, and protein
family analysis.

A Note on Scoring Functions for Nucleotide Alignment

When aligning nucleotide sequences, the scoring function determines
the numerical reward or penalty assigned to each possible pairing of
nucleotides or gaps. The choice of scoring system has a strong influ-
ence on the resulting alignment, especially when gaps are present or
when substitution biases exist in the data.

The scoring function we have used above (match = +2, mismatch
= -1, gap = -2) is a simple symmetric scheme that treats all nu-
cleotide substitutions equally and applies a uniform penalty for
gaps. It assumes that all substitutions and all gaps are equally
costly. While it may is sufficient for illustrating the mechanics of
global or local alignment algorithms such as Needleman–Wunsch or
Smith–Waterman, in biological data, however, substitutions between
nucleotides are not all equally likely. For instance, in DNA or RNA,
the four bases (A, C, G, and T or U) exhibit a strong transition/-
transversion bias:

• Transitions (A↔G and C↔T) occur more frequently,

• Transversions (A↔C, A↔T, G↔C, G↔T) occur less frequently.



sequence alignment methods 75

To reflect this bias, one can design a substitution matrix in which
transitions are penalized less heavily than transversions. In scoring
Table 8, transitions (A↔G, C↔T) receive a penalty of −0.5, while
transversions are penalized by −1.5.

A C G T
A +1 -1.5 -0.5 -1.5
C -1.5 +1 -1.5 -0.5
G -0.5 -1.5 +1 -1.5
T -1.5 -0.5 -1.5 +1

Table 8: Example of a nucleotide sub-
stitution matrix reflecting transition
bias.

More sophisticated scoring functions can be derived empirically. An alternative is to use explicit substi-
tution models such as Kimura models
that describe the evolutionary processes
with parameters like the transition/-
transversion ratio and base frequencies.
More on such models in later chapters.

For instance, from a large collection of trusted alignments, say, from a
library of homologous sequences, one can estimate the joint probabil-
ity P(a, b) of observing nucleotides a and b aligned to each other. The
resulting log-odds score is

S(a, b) = λ log
P(a, b)

P(a)P(b)
, (1)

where P(a) and P(b) are background frequencies and λ is a scaling
constant.

This is analogous to how PAM or BLOSUM matrices (see below)
are derived for proteins, though in practice it is less common for
DNA because of its smaller alphabet.

There are, however, typical parameter choices for scoring function,
depending on the application. Table 9 summarizes commonly used
scoring systems for nucleotide sequence alignment.

Purpose Match Mismatch Gap penalty

Didactic / simple +2 –1 –2 per gap
Stringent (identity) +1 –3 –2 per gap
Transition-aware +5 –4 transition –16 open

–10 transversion –4 extend

Table 9: Common scoring schemes for
nucleotide alignment.

Aligning Protein Sequences

All the examples above included alignments of nucleotide (DNA or
RNA) sequences. This is often useful for studying genes and regu-
latory regions, whereas aligning of protein sequences can provide a
deeper understanding of biological function and evolution.

Protein sequences evolve more slowly at the amino acid level than
their corresponding nucleotide sequences since multiple codons can
encode the same amino acid. As a result, proteins often retain de-
tectable similarity long after the underlying DNA sequences have di-



76 introduction to bioinformatics

verged beyond recognition. Aligning protein sequences therefore al-
lows us to identify conserved structural and functional regions—such
as catalytic sites, binding motifs, or folding domains—that may be
invisible in nucleotide-level comparisons.

Protein alignments are especially valuable when comparing genes
from different species (homology detection), inferring evolution-
ary relationships, or annotating new genes based on known protein
families. They are also used in structural biology and drug discov-
ery to predict the function of uncharacterized proteins or to design
mutations that alter activity or stability. Aligning protein sequences,
however, introduces additional complexity: there are twenty amino
acids rather than four nucleotides, and not all mismatches are equally
likely or equally significant. To align proteins effectively, we must
define an appropriate scoring mechanism that reflects biochemical
and evolutionary relationships among amino acids.

Protein Substitution Matrices

Protein substitution matrices are essential in bioinformatics, particu-
larly for scoring alignments between protein sequences by assessing
the likelihood of amino acid substitutions that may have occurred
over time. Among the most widely used of these is the BLOSUM
(BLOcks SUbstitution Matrix), which is derived from highly con- The BLOSUM matrices were introduced

by Steven and Jorja Henikoff in 1992

in their paper “Amino acid substitu-
tion matrices from protein blocks,”
published in Proceedings of the National
Academy of Sciences of the USA (PNAS).

served regions, or “blocks,” of protein families. By analyzing these
regions that remain largely unchanged across evolution, BLOSUM
matrices help detect similarity between protein sequences and reveal
functional or structural relationships.

The BLOSUM matrices were derived from data in the BLOCKS
database, which contained about 500 conserved regions, or "blocks,"
from approximately 200 protein families. Each block represented a A protein family is a group of proteins

that share a common evolutionary ori-
gin, often reflected in similar structures,
functions, or sequence motifs.

stable, functionally important region within a protein family that has
remained largely unchanged over evolutionary time. By focusing on
these conserved regions with minimal variation, researchers could
analyze meaningful substitutions that likely reflect evolutionary
relationships. This made the BLOCKS database an ideal resource
for deriving substitution scores that capture genuine evolutionary
patterns.

To create BLOSUM matrices, sequences within each block were In BLOSUM matrix construction,
similarity is measured as the percentage
of identical amino acids between
sequences within an aligned, gap-free
block, where all sequences are of the
same length.

grouped, or "clustered," according to a specific similarity threshold.
Clustering in this context means that sequences within a block that
share more than the specified percentage of similarity (e.g., 62% for
BLOSUM62) are grouped together as a single "cluster." Substitutions
are then only counted between different clusters rather than within a
cluster, reducing the influence of closely related sequences and em-



sequence alignment methods 77

A R N D C Q E G H I L K M F P S T W Y V
A 4 −1 −2 −2 0 −1 −1 0 −2 −1 −1 −1 −1 −2 −1 1 0 −3 −2 0
R −1 5 0 −2 −3 1 0 −2 0 −3 −2 2 −1 −3 −2 −1 −1 −3 −2 −3
N −2 0 6 1 −3 0 0 0 1 −3 −3 0 −2 −3 −2 1 0 −4 −2 −3
D −2 −2 1 6 −3 0 2 −1 −1 −3 −4 −1 −3 −3 −1 0 −1 −4 −3 −3
C 0 −3 −3 −3 9 −3 −4 −3 −3 −1 −1 −3 −1 −2 −3 −1 −1 −2 −2 −1
Q −1 1 0 0 −3 5 2 −2 0 −3 −2 1 0 −3 −1 0 −1 −2 −1 −2
E −1 0 0 2 −4 2 5 −2 0 −3 −3 1 −2 −3 −1 0 −1 −3 −2 −2
G 0 −2 0 −1 −3 −2 −2 6 −2 −4 −4 −2 −3 −3 −2 0 −2 −2 −3 −3
H −2 0 1 −1 −3 0 0 −2 8 −3 −3 −1 −2 −1 −2 −1 −2 −2 2 −3
I −1 −3 −3 −3 −1 −3 −3 −4 −3 4 2 −3 1 0 −3 −2 −1 −3 −1 3
L −1 −2 −3 −4 −1 −2 −3 −4 −3 2 4 −2 2 0 −3 −2 −1 −2 −1 1
K −1 2 0 −1 −3 1 1 −2 −1 −3 −2 5 −1 −3 −1 0 −1 −3 −2 −2
M −1 −1 −2 −3 −1 0 −2 −3 −2 1 2 −1 5 0 −2 −1 −1 −1 −1 1
F −2 −3 −3 −3 −2 −3 −3 −3 −1 0 0 −3 0 6 −4 −2 −2 1 3 −1
P −1 −2 −2 −1 −3 −1 −1 −2 −2 −3 −3 −1 −2 −4 7 −1 −1 −4 −3 −2
S 1 −1 1 0 −1 0 0 0 −1 −2 −2 0 −1 −2 −1 4 1 −3 −2 −2
T 0 −1 0 −1 −1 −1 −1 −2 −2 −1 −1 −1 −1 −2 −1 1 5 −2 −2 0
W −3 −3 −4 −4 −2 −2 −3 −2 −2 −3 −2 −3 −1 1 −4 −3 −2 11 2 −3
Y −2 −2 −2 −3 −2 −1 −2 −3 2 −1 −1 −2 −1 3 −3 −2 −2 2 7 −1
V 0 −3 −3 −3 −1 −2 −2 −3 −3 3 1 −2 1 −1 −2 −2 0 −3 −1 4

Table 10: BLOSUM62 matrix.

phasizing broader evolutionary changes. By capturing substitutions
across clusters, BLOSUM matrices can better detect relationships in
distantly related proteins.

The process to derive a BLOSUM matrix involved several key
steps:

1. Sequences within each block were grouped according to the sim-
ilarity threshold, forming clusters for sequences above the thresh-
old.

2. Substitutions were then counted across these clusters. For each
amino acid substitution occurring between clusters, a substitution
frequency was recorded.

3. Finally, substitution scores were calculated using the log-odds
scoring formula for each amino acid pair i, j:

S(i, j) = log
P(i, j)

P(i) · P(j)
(2)

Here, P(i, j) represents the observed probability of amino acid i
substituting for j, while P(i) and P(j) are the background prob-
abilities of each amino acid. Positive scores suggest substitutions
are more likely than chance, while negative scores indicate disfa-
vored substitutions.

Different BLOSUM matrices, like BLOSUM45, BLOSUM62 (Ta-
ble 10), and BLOSUM80, cater to different levels of similarity. Lower-
numbered BLOSUM matrices are suited for analyzing distantly



78 introduction to bioinformatics

related sequences, as they capture broader evolutionary trends.
Higher-numbered matrices are more appropriate for closely related
sequences. Among them, BLOSUM62 has become widely used, as it
provides a balanced approach suitable for a range of sequence align-
ment tasks, including use in algorithms like BLAST.

Note that diagonal values in a BLOSUM matrix differ because each
represents a log-odds score that reflects both evolutionary and statis-
tical factors. Matches of rare residues like tryptophan (W) or cysteine
(C) are biologically significant since these amino acids are less likely
to occur or change during evolution, so their conservation strongly
indicates shared ancestry and yields higher scores. In contrast, com-
mon residues like alanine (A) or glycine (G) appear frequently and
can substitute more easily, making their matches less informative and
thus scored lower.

Also note that amino acids with similar physicochemical prop-
erties, such as polarity, charge, or size, tend to substitute for one
another more often in evolution, since such changes are less likely to
disrupt protein structure or function. Consequently, BLOSUM matri-
ces generally assign higher (less negative or even positive) scores to
substitutions between amino acids with similar properties. For exam-
ple, leucine (L) and isoleucine (I) are both large, nonpolar, hydropho-
bic amino acids commonly found in protein cores, so swapping them
tends to preserve structure. Similarly, aspartic acid (D) and glutamic
acid (E) are both small, negatively charged (acidic) residues, so sub-
stituting one for the other often maintains charge and function.

PAM (Point Accepted Mutation) matrices, developed by Margaret
Dayhoff and colleagues, take a different approach. Unlike BLOSUM, PAM matrices were developed by

Margaret O. Dayhoff and colleagues
in the paper “A model of evolutionary
change in proteins,” published in Atlas
of Protein Sequence and Structure (1978).

which is based on direct observations from protein blocks, PAM
matrices are derived from a theoretical model of evolutionary change,
focusing on closely related sequences. PAM1, the starting matrix,
represents a 1% divergence, meaning each amino acid has had a 1%
chance of mutating to another. Higher PAM matrices, like PAM250,
are extrapolated from PAM1, estimating amino acid changes over
more extended evolutionary periods.

The key differences between BLOSUM and PAM lie in their
methodologies and applications. BLOSUM matrices rely on observed
data from conserved protein regions and do not involve extrapola-
tion, making them ideal for identifying more distant relationships
between proteins. Conversely, PAM matrices are modeled on evolu-
tionary theory and use extrapolation, making them better suited for
closely related sequences in global alignments. Thus, while BLOSUM
is preferred for broader sequence similarity searches, PAM matrices
find their application in evolutionary studies requiring a focus on
closely related sequences.


