
Where Are the Genes?

Genes are located on the DNA. :)
But where exactly? At this stage, let’s define a gene as a specific

region of the genome that contains a sequence of DNA which is
transcribed into messenger RNA and subsequently translated into a
protein.

By now, you may be familiar with the central dogma of molecular
biology, which essentially explains the flow of genetic information:
from DNA to RNA to protein. You also know that DNA is made up
of two strands, and these strands run in opposite directions, meaning
one strand is the reverse complement of the other. Genes can be
found on either strand.

DNA and RNA are synthesized in the 5’ to 3’ direction. This
means that during synthesis, a strand is read from 3’ to 5’ to cre-
ate a complementary RNA strand. Consider an example fragment of
the DNA:

5’-TTT GGA TTC CGG-3’

3’-AAA CCT AAG GCC-5’

The fragment contains two strands: one running from 5’ to 3’ and
the other running from 3’ to 5’. Note that RNA can be synthesized
from either of these two strands, and the RNA sequence will be the
reverse complement of the DNA sequence. It will be a complement since
the nucleotides pair with their complementary bases (A with U in
RNA, T with A, G with C, and C with G), and reverse since the RNA
strand is synthesized in the 5’ to 3’ direction, opposite to the template
strand’s 3’ to 5’ direction.

The 5’ to 3’ strand is often referred to as the coding strand (also
known as the sense strand) because it has the same sequence as the
mRNA, except that thymine is replaced with uracil in RNA. This is
the strand that directly reflects the sequence of the resulting protein.
The 3’ to 5’ strand is referred to as the template strand (also known as
the antisense strand) because it serves as the template for RNA poly-
merase during transcription. RNA polymerase reads the template
strand in the 3’ to 5’ direction to synthesize mRNA in the 5’ to 3’



44 introduction to bioinformatics

direction.
In databases like NCBI Nucleotide, sequences are typically provided

in the 5’ to 3’ direction of the coding strand. This means that the se-
quences listed usually correspond to the coding (sense) strand, which
matches the mRNA sequence that would be produced (with thymine
instead of uracil). Therefore, when we retrieve a nucleotide sequence
from a database like NCBI, you are usually getting the sequence in
the orientation of the coding strand, from the 5’ to 3’ end.

Reading Frames

A reading frame is a way of dividing a DNA or RNA sequence
into consecutive, non-overlapping sets of three nucleotides, called
codons, which correspond to amino acids during protein synthesis.
Since each codon is three bases long, there are three possible reading
frames for any given sequence, depending on where you start read-
ing. The correct reading frame is crucial, as a shift in the frame can
completely change the resulting amino acid sequence and therefore
the function of the protein.

Consider again the DNA fragment we have seen before. If we read
our sequence from left to right, the bottom strand is our template
strand, and the top strand is our coding strand. Depending on which
nucleotide we start with, the complementary nucleotides to the tem-
plate strand are:

TTT GGA TTC CGG

TTG GAT TCG

TGG ATT CCG

Each sequence above represents the complementary RNA strand Instead of thymine, the base
used in RNA is uracil. We will
leave the writing of the
sequences as is. The coding
tables are most often written in
the DNA language.

for the respective reading frame. Notice also that instead of comple-
menting the template strain, we can read the complement directly
from the 5’ to 3’ strain of the DNA fragment, which is, for that rea-
son, called the coding strain. These three sequences would translate
into three different sequences of amino acid sequences:

Phe - Gly - Phe - Arg

Leu - Asp - Ser

Trp - Ile - Pro

We could also use the upper strain of the DNA fragment as the
template strain. Let us write it in the 3’ to 5’ direction, that is, reading
it from right to left:

3’-GGC CTT AGG TTT-5’

The complementary RNA strand would be:



where are the genes? 45

1st Letter
2nd Letter

3rd Letter
T C A G

T TTT Phe TCT Ser TAT Tyr TGT Cys T
TTC Phe TCC Ser TAC Tyr TGC Cys C
TTA Leu TCA Ser TAA Stop TGA Stop A
TTG Leu TCG Ser TAG Stop TGG Trp G

C CTT Leu CCT Pro CAT His CGT Arg T
CTC Leu CCC Pro CAC His CGC Arg C
CTA Leu CCA Pro CAA Gln CGA Arg A
CTG Leu CCG Pro CAG Gln CGG Arg G

A ATT Ile ACT Thr AAT Asn AGT Ser T
ATC Ile ACC Thr AAC Asn AGC Ser C
ATA Ile ACA Thr AAA Lys AGA Arg A

ATG Met ACG Thr AAG Lys AGG Arg G
G GTT Val GCT Ala GAT Asp GGT Gly T

GTC Val GCC Ala GAC Asp GGC Gly C
GTA Val GCA Ala GAA Glu GGA Gly A
GTG Val GCG Ala GAG Glu GGG Gly G

Table 1: Genetic code table.

5’-CCG GAA TCC AAA-3’

Using this strain, the three possible reading frames are:

CCG GAA TCC AAA

CGG AAT CCA

GGA ATC CAA

Which would translate into:

Pro - Glu - Ser - Lys

Arg - Asn - Pro

Gly - Ile - Gln

To read our DNA fragment, we thus have six possibilities, three Given a DNA sequence and its
reverse complement, we have
six reading frames.

for each strain. And we thus get six different amino acid sequences.
Let us automate this process using Python code, also to check if our
transciptions and translations are correct.

from Bio.Seq import Seq

from Bio.Data import CodonTable

coding_seq = "TTTGGATTCCGG"

def reading_frame(seq, start):

"""Reading frame of a sequence starting at start position."""

end = len(seq) - (len(seq[start:]) % 3)

return seq[start:end]

def translate_reading_frames(seq):



46 introduction to bioinformatics

"""Translate the reading frames of a sequence."""

for i in range(3):

frame = reading_frame(seq, i)

rna_seq = Seq(frame).transcribe()

protein_seq = rna_seq.translate(to_stop=True)

print(f"Reading Frame {i + 1}:")

print(f"Nucleotide sequence: {frame}")

print(f"Amino acid sequence: {protein_seq}")

print()

translate_reading_frames(coding_seq)

The code above will output the following:

Reading Frame 1:

Nucleotide sequence: TTTGGATTCCGG

Amino acid sequence: FGFR

Reading Frame 2:

Nucleotide sequence: TTGGATTCC

Amino acid sequence: LDS

Reading Frame 3:

Nucleotide sequence: TGGATTCCG

Amino acid sequence: WIP

Whcih is fine, but note that the aminoacids are here represented
with single letters. To use the three-letter code, we need to add the
following to our code (where appropriate):

aa_three_letter = {

’A’: ’Ala’, ’R’: ’Arg’, ’N’: ’Asn’, ’D’: ’Asp’, ’C’: ’Cys’,

’Q’: ’Gln’, ’E’: ’Glu’, ’G’: ’Gly’, ’H’: ’His’, ’I’: ’Ile’,

’L’: ’Leu’, ’K’: ’Lys’, ’M’: ’Met’, ’F’: ’Phe’, ’P’: ’Pro’,

’S’: ’Ser’, ’T’: ’Thr’, ’W’: ’Trp’, ’Y’: ’Tyr’, ’V’: ’Val’,

’*’: ’Stop’

}

def translate_to_three_letter(protein_seq):

return "-".join(aa_three_letter[aa] for aa in protein_seq)

print(f"Final sequence: {translate_to_three_letter(protein_seq)}")

Let us change the code slightly, and output the translations for all
the six reading frames. Notice that, given the coding sequence, we
also need to translate all the frames from its reverse complement:

def translate_reading_frames(seq):

for i in range(3):

frame = reading_frame(seq, i)



where are the genes? 47

rna_seq = Seq(frame).transcribe()

protein_seq = rna_seq.translate(to_stop=True)

yield translate_to_three_letter(protein_seq)

reverse_complement = Seq(coding_seq).reverse_complement()

for seq in (coding_seq, reverse_complement):

print("\n".join(translate_reading_frames(seq)))

The output now nicely reads:

Phe-Gly-Phe-Arg

Leu-Asp-Ser

Trp-Ile-Pro

Pro-Glu-Ser-Lys

Arg-Asn-Pro

Gly-Ile-Gln

and matches the translations we have done manually.

Structure of Genes

A typical gene consists of several key regions that govern its expres-
sion and function. The promoter region contains binding sites for tran- Gene expression is the process

by which information from a
gene is used to synthesize a
functional product, typically a
protein, through transcription
and translation.

scription factors and RNA polymerase, which initiate transcription
at the transcription start site (TSS). The 5’ untranslated region (5’ UTR)
follows, playing a role in regulating mRNA stability and translation
efficiency, though it is not translated into protein. The open reading
frame (ORF) is the main coding region, responsible for producing the
protein sequence. After the ORF, the 3’ untranslated region (3’ UTR)
influences mRNA stability, localization, and translation after tran-
scription. Finally, the polyadenylation signal signals the addition of a
poly-A tail to the mRNA, which enhances its stability and facilitates
export from the nucleus.

Figure 25 shows a typical gene structure as we have described
above. Note that this structure represents a bacterial (prokaryotic)
genome, where genes are typically organized without introns. In
contrast, in eukaryotic genomes, genes contain introns that are re-
moved during a process called splicing, leaving only exons to form
the mature mRNA.

Open Reading Frames

An open reading frame (ORF) is a continuous stretch of nucleotides in
a DNA sequence that has the potential to be translated into a protein.
It begins with a start codon (usually ATG) and extends up to, but
does not include, a stop codon (such as TAA, TAG, or TGA), which



48 introduction to bioinformatics

Figure 25: A structure of a typical gene.

signals the end of translation. An ORF is different from a reading
frame, which refers to one of the three possible ways in which a nu-
cleotide sequence can be read in sets of three nucleotides (codons). A
reading frame becomes an open reading frame only when it includes
a start codon, a series of codons that could code for amino acids,
and ends with a stop codon, indicating a potential protein-coding
sequence. Not all reading frames are open reading frames, as some
may not contain both a start and stop codon.

An open reading frame (ORF) is not necessarily the coding sequence
of a gene because the start codon, an ATG, also encodes the amino
acid methionine, which can appear within a gene, not just at the start.
This means that an ORF could be part of a larger sequence or occur
in non-coding regions where it doesn’t correspond to a functional
gene. Additionally, regulatory elements and post-transcriptional
modifications, like splicing, may result in ORFs that are never trans-
lated into functional proteins. Therefore, while ORFs are potential
coding sequences, not all ORFs correspond to actual gene-coding
regions.

In general, the term ORF can apply to all uninterrupted sequences
between a start and stop codon, not necessarily limited to the longest
one, as many smaller ORFs may be present within a gene sequence.
However, when identifying coding regions, researchers often prior-
itize the longest ORF as it is more likely to represent the primary
protein-coding sequence. For this reason, open reading frame typi-
cally refers to the longest possible stretch of DNA (or RNA) between
a start codon (often ATG in DNA) and a stop codon (TAA, TAG, or
TGA in DNA) that could be translated into a protein.



where are the genes? 49

Gene Prediction

Gene prediction is the process of identifying the location and structure
of genes in a genome. This is a crucial step in understanding the ge-
netic information encoded in a genome and is essential for studying
gene function, evolution, and disease. Gene prediction can be done
using computational methods, which analyze DNA sequences to
identify potential genes based on sequence features and patterns.

We will greatly simplify the process of gene prediction here
and focus only on finding the longest open reading frames, i.e. the
longest stretches between start and any stop codon. Let us start with
a Python code that finds all open reading frames in a given DNA
sequence.

from Bio import SeqIO

from Bio.Seq import Seq

def codon_walk(s, frame=0):

"""Walk through a sequence in codons."""

for ix in range(frame, len(s), 3):

yield ix, s[ix:ix+3]

def orf_finder(seq, frame, strand=1):

"""Find the longest ORFs in a sequence."""

orfs = []

start = None

n = len(seq)

for index, codon in codon_walk(seq, frame):

if not start and codon in START_CODON:

start = index

# +3 below for including the stop codon

elif start and codon in STOP_CODON:

if strand == 1:

orfs.append((start, index+3, strand))

else:

orfs.append((n-(index+3), n-start, strand))

start = None

return orfs

def get_orfs(seq):

"""Get ORFs from a sequence and its reverse complement."""

orfs = []

for s, strand in ((seq, 1), (seq.reverse_complement(), -1)):

for frame in range(3):

orfs.extend(orf_finder(s, frame, strand))

return orfs

The function codon_walk is a generator that walks through a se-



50 introduction to bioinformatics

quence in codons. The function orf_finder finds open reading
frames in a sequence; it remembers the first occurence of the start
codon, and when it hits the stop codon in the current reading frame
saves it to the list. The function get_orfs finds ORFs in a sequence
and its reverse complement.

Notice that the stop codon is not a part of ORF, but we included it
so that we can easily check which stop codon was encountered, and
verify that the code actually works.

Let us test the code first using a really short sequence:

>>> START_CODON = set(["ATG"])

>>> STOP_CODON = set(["TAA", "TAG", "TGA"])

>>> seq = Seq("AAACTAATGTTTTTTATGTTTTAAAAAAACATA")

>>> orfs = get_orfs(seq)

>>> orfs

[(6, 24, 1), (20, 32, -1)]

>>> for start, end, strand in orfs:

... print(f"ORF: {start}-{end}, {int((end-start)/3) - 1}"

... "(strand: {strand})")

... s = seq[start:end] if strand==1

... else seq[start:end].reverse_complement()

... print(f"{s}")

... print()

...

ORF: 6-24, 5 (strand: 1)

ATGTTTTTTATGTTTTAA

ORF: 20-32, 3 (strand: -1)

ATGTTTTTTTAA

This looks ok, but let us test the code on a real genome. We will
use the genome of Mycoplasma genitalium, a bacterium with one of the
smallest genomes known for a free-living organism. In M. genitalium,
the TGA codon is unusual because it is typically a stop codon in
most organisms, but in this organism, it encodes the amino acid
tryptophan (Trp) instead of signaling termination. Therefore, the
functional stop codons in M. genitalium are only TAA and TAG.

>>> seq = SeqIO.read("data/m_genitalium.fasta", "fasta").seq

>>> START_CODON = set(["ATG"])

>>> STOP_CODON = set(["TAA", "TAG"])

>>> orfs = get_orfs(seq)

>>> len(orfs)

10716

That’s a lot of open reading frames! M. genetalium, in fact, has only
about 500 protein-coding genes. So not all of these ORFs are actual
genes. And then could also miss some of the



where are the genes? 51

For a start, we can filter out the ORFs that are too short to be con-
sidered protein-coding genes. But how long actully are ORFs that we
found? And how long are the actual genes in the genome? It is time
to find this out.

ORF Lengths

First, we start with our ORFs. Remember, we already looked for the
longest stretches of DNA between start and stop codons, and were
therefore already biased towards longer sequences. But how long are
they?

>>> n = len(orfs)

>>> for i in range(0, 200, 20):

>>> k = sum(1 for l in lengths if i <= l < i+20)

>>> print(f"{i:3} .. {i+20:3}: {k:>5,} ({k/n:4.1%})")

0 .. 20: 7,030 (65.6%)

20 .. 40: 2,036 (19.0%)

40 .. 60: 639 (6.0%)

60 .. 80: 262 (2.4%)

80 .. 100: 136 (1.3%)

100 .. 120: 92 (0.9%)

120 .. 140: 54 (0.5%)

140 .. 160: 41 (0.4%)

160 .. 180: 42 (0.4%)

180 .. 200: 27 (0.3%)

>>> print(f"ORFs longer than {lmax}: {k:,} ({k/n:4.1%})")

ORFs longer than 200: 354 (3.3%)

The vast majority of our ORFs are short—–too short, in fact, to
be considered protein-coding genes. However, there are also some
longer ORFs. Filtering out the shorter ones could be beneficial, but
what would be a reasonable length threshold to use? Several ap-
proaches can help determine this, and we will examine them one at a
time.

Permutation Test

Start and stop codons are not just randomly placed throughout
the genome. At least we hope so. :). Throughout the evolution, the
genome been reshaped to contain those codon at the right places
so that within them the open reading frames are long enough to be
considered genes. Surely, therefore, the distribution of the length of
ORFs should be different from the ORFs inferred from some random
sequence. We can test this hypothesis using a permutation test.

Let’s permute our input sequence, and redo the ORF search.



52 introduction to bioinformatics

import random

seq = list(seq)

random.seed(42)

random.shuffle(seq)

seq = Seq("".join(seq))

orfs = get_orfs(seq)

lengths = [int((end-start)/3-1) for start, end, _ in orfs]

report_length_dist(lengths)

We packed the code that reports on length distribution within
report_length_dist (not shown here). Running the code, we get:

0 .. 20: 11,133 (68.1%)

20 .. 40: 3,607 (22.1%)

40 .. 60: 1,153 (7.1%)

60 .. 80: 301 (1.8%)

80 .. 100: 104 (0.6%)

100 .. 120: 35 (0.2%)

120 .. 140: 5 (0.0%)

140 .. 160: 1 (0.0%)

160 .. 180: 0 (0.0%)

180 .. 200: 0 (0.0%)

ORFs longer than 200: 0 (0.0%)

That’s a major difference with the distribution of ORF lengths
when these are inferred from the actual, non-permuted sequence. In
the permuted sequence, there are no ORFs longer than 200 codons,
while in the actual sequence, there are 354 of them. This suggests
that the distribution of ORF lengths in the actual sequence is not
random and that the ORFs we found are not just random stretches of
DNA.

We can use this information to set a threshold for the minimum
ORF length. For example, we could set the threshold so that there is
only a small chance that an ORF of that length would be found in a
permuted sequence. Let us denote this probability as a. By setting
a = 0.05, we indicate that we are willing to accept a 5% probability
of incorrectly identifying a random sequence as an ORF of interest.
Thus, we would set the minimum ORF length threshold so that only
5% of ORFs in a randomly permuted sequence would meet or exceed
this length:

>>> alpha = 0.05

>>> sorted(lengths, reverse=True)[int(len(orfs)*alpha)]

50

Turns out, in our permutation experiment, we need to set the
threshold to 50. Setting a to, say, 0.01, we would be more stringent



where are the genes? 53

and accept only 1% probability of incorrectly identifying a random
sequence as an ORF of interest. The threshold would then be:

>>> alpha = 0.01

>>> sorted(lengths, reverse=True)[int(len(orfs)*alpha)]

77

Oh, well, it all depends on our choice of the degree of error we
are willing to accept. In one way, we have replaced one problem, one
parameter, with another, but at least we now think we understand
what is going on and know that our threshold should be set probably
in the range from 50 to, say, 100.

Mutlinomial Sequence Model

Another approach to determining the minimum ORF length thresh-
old is to use a multinomial sequence model. This model assumes that
the sequence is generated by a multinomial distribution, with each
codon drawn independently from the distribution. We can either es-
timate the parameters of this distribution from the actual sequence
or assume that each codon is equally likely to appear. Let’s proceed
with the latter and see where this leads us.

Let us denote the probability of a run of a k or more non-stop
codons with P, and assert that this probability should be less than
a, the level of the error we would accept for finding the ORF if the
sequence would be random. Assuming all codons are equally likely,
and taking into account that there ae (usually) three stop codons, we
can write:

P =

✓
61
64

◆k
 a

It is then easy to solve this equation for k:

k � log(a)
log(61)� log(64)

With a = 0.05, we get k ⇡ 63, and with a = 0.01, we get k ⇡ 96.
Which matches well with what we have found using the permutation
test. Again, given a specific genome, we could be more precise by
estimating the actual codon frequencies.

Comparison with Actual Gene Models

To find an appropriate threshold for the minimum ORF length, we
can also compare the ORFs we identified with the actual gene mod-
els in the genome. For this purpose, we can consider an organism



54 introduction to bioinformatics

that has been well-studied and has an annotated genome, meaning
the locations of the genes are known. By comparing the ORFs we
found, filtered by length, with the actual genes in the genome, we can
evaluate how well they match.

We need two main ingredients for this approach: the annotated
genome and criteria to assess how closely our ORFs match the actual
genes.

Let us start with the first ingredient. The annotated genomes can
be accessed in the public databases, such as NCBI, and the following
code will do the work, plus it will save the annotations to the local
file for later reuse:

import os

import pickle

from Bio import Entrez

organism_id = {

"Hs_21q": "BA000005.3", # H. sapiens chromosome 21q

"Mt": "AL123456.3", # Mycobacterium tuberculosis

"Mg": "NC_000908.2", # Mycoplasma genitalium

"Ec": "NC_000913", # E coli

}

def load_gene_model(organism):

filename = f"data/{organism}-gb.pickled"

if os.path.exists(filename):

# Load the sequence record from the pickle file

with open(filename, "rb") as f:

rec = pickle.load(f)

else:

# Fetch the sequence from NCBI if not cached locally

Entrez.email = "your-email-here"

with Entrez.efetch(

db="nucleotide",

rettype="gbwithparts",

retmode="text",

id=organism_id[organism]

) as handle:

rec = SeqIO.read(handle, "gb")

# Save the fetched record to a pickle file for future use

with open(filename, "wb") as f:

pickle.dump(rec, f)

return rec

Let us load the gene model for M. genitalium and see what kind of
features do we have access to:

>>> model = load_gene_model("Mg")



where are the genes? 55

>>> model.description

’Mycoplasmoides genitalium G37, complete sequence’

>>> len(model.features)

1137

>>> Counter(f.type for f in model.features)

Counter({’gene’: 568,

’CDS’: 526,

’tRNA’: 36,

’rRNA’: 3,

’ncRNA’: 2,

’source’: 1,

’tmRNA’: 1})

Of the features above, there are two that may interest us. The
gene annotation marks the entire region of DNA that defines a gene,
including both coding and non-coding regions necessary for its func-
tion, such as regulatory elements, exons, and introns. In contrast, the
CDS (Coding Sequence) annotation specifies only the segment that
codes for the protein, starting from the start codon and ending at the
stop codon, excluding non-coding regions like introns and regulatory
sequences. Thus, while the gene encompasses all parts involved in
the expression and regulation of a gene product, the CDS is limited
to the exact sequence translated into a protein.

For our comparison with the ORFs we found, we therefore need to
consider CDS, the coding sequences. There are 526 of them in the M.
genitalium genome.

Our second ingredient is the criteria for assessing how well our
ORFs match the actual genes. To do this, we can use several scoring
functions from the field of machine learning. First, we define the
following terms:

• TP (True Positives): The number of ORFs correctly identified as
genes.

• FP (False Positives): The number of ORFs incorrectly identified as
genes.

• FN (False Negatives): The number of actual genes not identified as
ORFs.

• #predictions: The total number of predicted ORFs.

• #genes: The total number of actual genes in the annotated genome.

Using these definitions, we can calculate:

• Precision: The fraction of correctly identified ORFs among all
identified ORFs.

Precision =
TP

TP + FP



56 introduction to bioinformatics

• Recall: The fraction of correctly identified ORFs among all actual
genes.

Recall =
TP

TP + FN

• F1 Score: The harmonic mean of precision and recall, balancing
the two.

F1 Score = 2 · Precision ⇥ Recall
Precision + Recall

Here is now our battle plan: we find all the longest ORFs in the
genome, then threshold them by length L, and compare them with
the actual genes in the genome. We will use the F1 score as our main
metric to evaluate how well our ORFs match the actual genes. We
will then vary the threshold L and see how the F1 score changes.
Below, we assume the model and the sequence seq are aready loaded.

cds = [f for f in model.features if f.type == "CDS"]

orfs = get_orfs(seq)

locs = set((int(c.location.start), int(c.location.end),

c.location.strand) for c in cds)

print(f"{’L’:>3} {’Pred’:>4} {’True’:>5} {’False’:>5} "

f"{’Prec’:>5} {’Rec’:>5} {’F1’:>5}")

for min_len in range(50, 200, 10):

sel = [orf for orf in orfs

if ((orf[1] - orf[0]) / 3 - 1) > min_len]

tp = [strand for (s, e, strand) in sel

if (s, e, strand) in locs]

prec = len(tp) / len(sel)

recall = len(tp) / len(locs)

f1 = 2 * prec * recall / (prec + recall)

print(f"{min_len:3d} {len(sel):4d} {len(tp):4d} "

f"{len(sel) - len(tp):6d} "

f"{prec:5.3f} {recall:5.3f} {f1:5.3f}")

Most of the above code is just for the output formatting. The ac-
tual calculation of the F1 score is done in the loop. Note also that
we store the actual locations of the genes in the set locs for faster
lookup. Running the code, we get:

L Pred True False Prec Rec F1

50 3172 1466 1706 0.462 0.858 0.601

60 2524 1453 1071 0.576 0.850 0.687

70 2142 1432 710 0.669 0.838 0.744

80 1945 1411 534 0.725 0.826 0.772

90 1798 1383 415 0.769 0.809 0.789

100 1679 1342 337 0.799 0.785 0.792



where are the genes? 57

110 1588 1305 283 0.822 0.764 0.792

120 1522 1274 248 0.837 0.745 0.789

130 1469 1241 228 0.845 0.726 0.781

140 1419 1214 205 0.856 0.710 0.776

150 1371 1174 197 0.856 0.687 0.762

160 1323 1135 188 0.858 0.664 0.749

170 1272 1093 179 0.859 0.640 0.733

180 1228 1057 171 0.861 0.618 0.720

190 1182 1015 167 0.859 0.594 0.702

The F1 score is highest for L = 100, which is consistent with our
previous findings. The F1 score is a good metric for evaluating the
performance of our ORF prediction, as it balances precision and re-
call. In this case, the F1 score is highest when the minimum ORF
length threshold is set to 100 codons. This threshold gives us a good
balance between correctly identifying ORFs and avoiding false posi-
tives.

What’s Next?

Admittedly, identifying genes based solely on ORFs and filtering out
spurious ones by length is a simplistic approach, though it serves as
a good starting point. In reality, gene prediction is a complex process
involving additional steps such as identifying promoter regions,
splice sites, and regulatory elements. Furthermore, gene prediction
often leverages machine learning models that can learn patterns in
the data to make more accurate predictions. Here, however, we will
stick with our basic approach and move on to the next chapter, where
we will explore methods for comparing gene sequences across and
within species.


