
DATA M I N I N G :

A HAND S - O N COU R S E AT B AY LO R CO L L E G E O F MED I C I N E

B I O I N FO RMAT I C S L A B , L J U B L J A N A

2

We have designed this course for students and researchers of life

sciences. These working notes include Orange workflows and visual-

izations we will construct during the lectures. Throughout our train-

ing, you will see how to accomplish various data mining tasks through

visual programming and use Orange to build visual data mining work-

flows. Many similar data mining environments exist, but the lecturers

prefer Orange for one simple reason—they are its authors.

If you haven’t already installed Orange, please download the instal-

lation package from http://orangedatamining.com.

The notes were written by Blaž Zupan and Janez Demšar with

massive help from the members of the Bioinformatics Lab in Ljubljana,

Slovenia, that developed Orange. We would specifically like to thank

Ajda Pretnar Žagar and Marko Toplak for proofreading, editing, and

converting our previous documents in Pages to LaTeX.

http://orangedatamining.com

Copyright © 2022

published by bioinformatics lab, ljubljana

tufte-latex.googlecode.com

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compli-

ance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICE

NSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License

is distributed on an “as is” basis, without warranties or conditions of any kind, either

express or implied. See the License for the specific language governing permissions and limitations under

the License.

First printing, February 2022

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Contents

Workflows in Orange 7

Basic data exploration 11

Saving your work 14

Loading data sets 15

Hierarchical Clustering 17

Animal Kingdom 19

Silhouettes 20

k-Means Clustering 23

Classification 26

Classification Trees 27

Model Inspection 30

Classification Accuracy 31

How to Cheat 32

Cross-Validation 35

5

Logistic Regression 36

Random Forests 38

Support Vector Machines 39

k-Nearest Neighbors 40

Naive Bayes 41

Cheating with
Feature Subset Selection 42

Cheating Even Works on
Randomized Data 43

How to Correctly Perform
Test and Score? 44

Classification Model Scoring 46

Choosing the Decision Threshold 48

Linear Regression 50

Regularization 53

Regularization and Accuracy
on a Test Set 55

Regularization 56

Evaluating Regression 57

6

Feature Scoring and Selection 59

Principal Component Analysis 61

Mapping the Data 66

Image Embedding 69

Workflows in Orange

Orange workflows consist of components that read, process, and

visualize data. We refer to these components as “widgets” We place

the widgets on a drawing board called the “canvas” to design a work-

flow. Widgets communicate by sending information along their com-

munication channel. Output from one widget can be used as input to

another.

A simple workflow with two connected
widgets and one widget without con-
nections. The outputs of a widget ap-
pear on the right, while the inputs ap-
pear on the left.

We construct workflows by dragging widgets onto the canvas and

connecting them by drawing a line from the transmitting widget to

the receiving widget. The widget’s outputs are on the right, and the

inputs on the left. In the workflow above, the File widget sends data

to the Data Table widget.

8 data mining: a hands-on course at baylor college of medicine

Start by constructing a workflow that consists of a File widget, two

Scatter Plot widgets and two Data Table widgets:

A workflow with a File widget that
reads the data from a disk and sends
it to the Scatter Plot and Data Table
widget. The Data Table renders the
data in a spreadsheet, while the Scat-
ter Plot visualizes it. The plot’s se-
lected data points are sent to two other
widgets: Data Table (1) and Scatter
Plot (1).

The File widget reads data from your local disk. Open the File

widget by double-clicking its icon. Orange comes with several pre-

loaded data sets. From these (“Browse documentation data sets...”),

choose brown-selected.tab, a yeast gene expression data set.

Orange workflows often start with a
File widget. The brown-selected data
set comprises 186 rows (genes) and
81 columns. Out of the 81 columns,
79 contain gene expressions of baker’s
yeast under various conditions, one col-
umn (marked as a ”meta attribute”)
provides gene names, and one col-
umn contains the ”class” value or gene
function.

After you load the data:

1. Open the other widgets.

2. Select a few data points in the Scatter Plot widget and watch as

they appear in the Data Table (1).

workflows in orange 9

3. Use a combination of two Scatter Plot widgets, where the second

scatter plot shows a detail from a smaller region selected in the first

scatter plot.

The following is a side note, but it won’t hurt. The scatter plot for

a pair of random features does not provide much information on gene

function. Does this change with a di↵erent choice of feature pairs in

the visualization? Rank projections at the button on the top left of

the Scatter Plot widget can help you find a good feature pair. How do

you think this works? Could the suggested pairs of features be helpful

to a biologist?

Scatter Plot and Ranking

We can connect the output of the Data Table widget to the Scatter

Plot widget to highlight the chosen data instances (rows) in the scatter

plot.

In this workflow, we have switched on
the option ”Show channel names be-
tween widgets” in File/Preferences.

How does Orange distinguish between the primary data source and

the data selection? It uses the first connected signal as the entire data

set and the second one as its subset. To make changes or to check

what is happening under the hood, double click on the line connecting

the two widgets.

10 data mining: a hands-on course at baylor college of medicine

The rows in the data set we are exploring in this lesson are gene

profiles. We could perhaps use widgets from the Bioinformatics add-on

to get more information on the genes we selected in any of the Orange

widgets.Orange comes with a basic set of wid-
gets for data input, preprocessing, vi-
sualization and modeling. For other
tasks, like text mining, network anal-
ysis, and bioinformatics, there are add-
ons. Check them out by selecting Add-
ons... from the Options menu.

Basic data exploration

Let us consider another problem, this time from clinical me-

dicine. We will dig for something interesting in the data and explore

it with visualization widgets. You will get to know Orangebetter, and

also learn about several interesting visualizations.

We will start with an empty canvas; to clean it from our previous

lesson, use either File/New or select all the widgets and remove them

(use the backspace/delete key).

Now again, add the File widget and open another documentation

data set: heart disease. How does the data look like?

A simple workflow to inspect the
loaded dataset.

Let us check whether common visualizations tell us anything inter-

esting. (Hint: look for gender di↵erences. These are always interesting

and occasionally even real.)

Quick check with common statistics
and visualization widgets.

12 data mining: a hands-on course at baylor college of medicine

Data can also be split by the value of features, in this case the

gender.

The two Distributions widgets get dif-
ferent data: the upper gets the se-
lected rows and the lower gets the rest.
Double-click the connection between
the widgets to access setup dialog, as
you’ve learned in the previous lesson.

In the Select Rows widget, we select the female patients. You can

also add other conditions. The selection of data instances provides

a powerful combination with visualization of data distribution. Try

having at least two widgets open simultaneously and explore the data.

There are two less-known — but great — visualizations for observ-

ing interactions between features.

The mosaic display shows a rectangle split into columns with widths

reflecting the prevalence of di↵erent types of chest pain. Each column

is then further split vertically according to gender distributions within

the column. The resulting rectangles are split again horizontally ac-

cording to age group sizes. The red and blue areas represent each

group’s outcome distribution within the resulting bars, and the tiny

strip to the left of each shows the overall distribution.

basic data exploration 13

What can you read from this diagram?

You can play with the widget by trying
di↵erent combinations of 1-4 features.

See the Score Combinations button? Try to guess what it does? And how
does it score the combinations? Hint: there are some Greek letters at the
bottom of the widget.

Another visualization, the Sieve di-

agram also splits a rectangle horizon-

tally and vertically, but with indepen-

dent cuts, so the areas correspond to

the expected number of data instances

if the observed variables were indepen-

dent. For instance, 1/4 of patients are

older than 60, and 1/3 of patients are

female, so the area of the bottom right

rectangle is 1/12 of the total area. With

roughly 300 patients, we would expect

1/12 ⇥ 300 = 25 older women in our

data. Instead, there are 34. The sieve di-

agram shows the di↵erence between the

expected and the observed frequencies

by the grid density and the color of the

field.

Saving your work

At the end of a lesson, your workflow may look like this:

A fairly complex workflow that you
would want to share or reuse at a later
time.

You can save this workflow using the File/Save menu and share it

with your colleagues. Just don’t forget to put the data files in the

same directory as the file with the workflow.

Widgets also have a Report button in their bottom status bar, which

you can use to keep a log of your analysis. When you find something

interesting, just click it and the graph will be added to your log. YouClicking on a section of the report win-
dow allows you to add a comment. can also add reports from the widgets on the path to this one, to make

sure you don’t forget anything relevant.

The report window and the additional
text input box (bootom).

You can save the report as HTML or PDF, or a report file that

includes all workflow related report items that you can later open in

Orange. In this way, you and your colleagues can reproduce your

analysis results.

Loading data sets

The data sets we have worked with in the previous lesson

come with the Orange installation. Orange can read data from many

file formats which include tab and comma separated and Excel files.

To see how this works, let’s prepare a data set (with school subjects

and grades) in Excel and save it on a local disk.

Make a spreadsheet in Excel with the
numbers shown on the left. Of course,
you can use any other editor, but re-
member to save your file in the comma
separated values (*.csv) format.

In Orange, we can use, for example, the File widget to load this

data set.

The File widget allows you to select
a local file or even paste a URL to a
Google Spreadsheet. In the Info box,
you will see a quick summary about the
data you loaded. By double clicking
the fields, you can also edit the types
of entries and their role, that will be
relevant for further processing.

Looks good! Orange has correctly guessed that student names are

character strings and that this column in the data set is special, meant

16 data mining: a hands-on course at baylor college of medicine

to provide additional information and not to be used for any kind

of modeling (more about this in the upcoming lectures). All other

columns are numeric features.

It is always good to check if all the data was read correctly. Now,

you can connect the File widget with the Data Table widget,

Construct a simple workflow shown on
the right.

and double click on the Data Table to see the data in a spreadsheet

format. Nice, everything is here.

The Data Table widget shows the
loaded data set, you can select rows,
which will appear on the output of the
widget. It is also possible to do simple
data visualizations. Explore the func-
tionalities!

Instead of using Excel, we could also use Google Sheets, a free on-

line spreadsheet alternative. Then, instead of finding the file on the

local disk, we would enter its URL address to the File widget URL

entry box.

Orange’s legacy native data format is a tab-delimited text file with

three header rows. The first row lists the attribute names, the second

row defines their type (continuous, discrete, time and string, or abbre-

viated c, d, t, and s), and the third row an optional role (class, meta,

weight, or ignore).

There is more to input data formatting and loading. If you would

really like to dive in for more, check out the documentation page on

Loading your Data, or a video tutorial on this subject.

https://orange-visual-programming.readthedocs.io/loading-your-data/index.html
https://www.youtube.com/watch?v=MHcGdQeYCMg

Hierarchical Clustering

We are interested in finding clusters in our data. We

want to identify groups of data instances close together, similar to each

other. Consider a simple, two-featured data set (see the side note) and

plot it in the Scatter Plot. How many clusters do we have? What

defines a cluster? Which data instances should belong to the same

cluster? How does the clustering algorithm work?

We will introduce clustering with a
simple data set on students and their
grades in English and Algebra. Load
the data set from http://file.biola

b.si/text/grades.tab.

First, we need to define what we mean by ”similar”. We will assume

that all our data instances are described (profiled) with continuous fea-

tures. One simple measure of similarity is the Euclidean distance. So,

we would like to group data instances with small Euclidean distances.

There are di↵erent ways to measure
the similarity between clusters. The
estimate we have described is called
average linkage. We could also es-
timate the distance through the two
closest points in each group (single
linkage) or through the two points that
are furthest away (complete linkage).

Next, we need to define a clustering algorithm. Say that we start

with each data instance being its cluster, and then, at each step, we

join the closest clusters. We estimate the distance between the clusters

with the average distance between all their pairs of data points. This

algorithm is called hierarchical clustering.

http://file.biolab.si/text/grades.tab
http://file.biolab.si/text/grades.tab

18 data mining: a hands-on course at baylor college of medicine

One possible way to observe the results of clustering on our small

data set with grades is with the following workflow:

It couldn’t be simpler. Load the data, measure the distances, use

them in hierarchical clustering, and visualize the results in a scatter

plot. The Hierarchical Clustering widget allows us to cut the hierarchy

at a specific distance score and output the corresponding clusters:

Animal Kingdom

Your lecturers spent a substantial part of their youth admiring a par-

ticular Croatian chocolate called Animal Kingdom. Each chocolate

bar came with a card—a drawing of some (random) animal, and the

associated album made us eat a lot of chocolate.

Funny stu↵ was we never understood the order in which the cards

were laid out in the album. We later learned about taxonomy, but

being more inclined to engineering we never mastered learning it in

our biology classes. Luckily, there’s data mining and the idea that

taxonomy simply stems from measuring the distance between species.

Hierarchical clustering works fast for smaller data sets. But for
bigger ones it fails. Simply, it cannot be used. Why?

Here we use the zoo data (from the documen-

tation data sets) with attributes that report on

various features of animals (has hair, has feath-

ers, lays eggs). We measure the distance and

compute the clustering. Animals in this data

set are annotated with type (mammal, insect,

bird, and so on). It would be cool to know if

the clustering re-discovered these groups of an-

imals.

To split the data into clusters, let us manually set a threshold by

dragging the vertical line left or right in the visualization. Can you

say what is the appropriate number of groups?

What is wrong with those mammals?
Why can’t they be in one single clus-
ter? Two reasons. First, they repre-
sent 40% of the data instances. Sec-
ond, they include some weirdos. Who
are they?

Silhouettes

Consider a two-feature data set which we have painted in

the Paint Data widget. We send it to the k-means clustering, tell it to

find three clusters, and display the clustering in the scatter plot.Don’t get confused: we paint data
and/or visualize it with Scatter plots,
which show only two features. This
is just for an illustration! Most data
sets contain many features and meth-
ods like k-Means clustering take into
account all features, not just two.

The data points in the green cluster are well separated from those in

the other two. Not so for the blue and red points, where several points

are on the border between the clusters. We would like to quantify the

degree of how well a data point belongs to the cluster to which it is

assigned.

Average distance A.

We will invent a scoring measure for this and we will call it a sil-

houette (because this is how it’s called). Our goal: a silhouette of 1

(one) will mean that the data instance is well rooted in the cluster,

while the score of 0 (zero) will be assigned to data instances on the

border between two clusters.

For a given data point (say the blue point in the image on the left),

we can measure the distance to all the other points in its cluster and

compute the average. Let us denote this average distance with A. The

smaller the A, the better.

On the other hand, we would like a data point to be far away from

the points in the closest neighboring cluster. The closest cluster to

our blue data point is the red cluster. We can measure the distances

between the blue data point and all the points in the red cluster, and

again compute the average. Let us denote this average distance as B.

silhouettes 21

The larger the B, the better.

Average distance B.

The point is well rooted within its own cluster if the distance to

the points from the neighboring cluster (B) is much larger than the

distance to the points from its own cluster (A), hence we compute B-A.

We normalize it by dividing it with the larger of these two numbers, S

= (B -A) / maxA, B. Voilá, S is our silhouette score.

Orange has a Silhouette Plot widget that displays the values of the

silhouette score for each data instance. We can also choose a particular

data instance in the silhouette plot and check out its position in the

scatter plot. C3 is the green cluster, and all its
points have large silhouettes. Not so
for the other two.

This of course looks great for data sets with two features, where the

scatter plot reveals all the information. In higher-dimensional data, the

scatter plot shows just two features at a time, so two points that seem

close in the scatter plot may be actually far apart when all features -

perhaps thousands of gene expressions - are taken into account. We selected three data instances with
the worst silhouette scores. Can you
guess where they lie in the scatter
plot?

22 data mining: a hands-on course at baylor college of medicine

The total quality of clustering - the silhouette of the clustering -

is the average silhouette across all points. When the k-Means widget

searches for the optimal number of clusters, it tries a di↵erent number

of clusters and displays the corresponding silhouette scores. Ah, one

more thing: Silhouette Plot can be used on any data, not just on data

sets that are the output of clustering. We could use it with the iris

data set and figure out which class is well separated from the other

two and, conversely, which data instances from one class are similar to

those from another.

We don’t have to group the instances by the class. For instance,

the silhouette on the left would suggest that the patients from the

heart disease data with typical anginal pain are similar to each other

(with respect to the distance/similarity computed from all features),

while those with other types of pain, especially non-anginal pain are

not clustered together at all.

k-Means Clustering

Hierarchical clustering is not suitable for larger data

sets due to the prohibitive size of the distance matrix: with 30 thou-

sand objects, the distance matrix already has almost one billion ele-

ments. An alternative approach that avoids using the distance matrix

is k-means clustering.

K-means clustering randomly selects k centers (with k specified in

advance). Then it alternates between two steps. In one step, it assigns

each point to its closest center, thus forming k clusters. In the other,

it recomputes the centers of the clusters. Repeating these two steps

typically converges quite fast; even for big data sets with millions of

data points it usually takes just a couple of ten or hundred iterations.

Orange’s Educational add-on provides a widget Interactive k-Means,

which illustrates the algorithm.

Use the Paint Data widget to paint some data - maybe five groups of

points. Feed it to Interactive k-means and set the number of centroids

to 5. You may get something like this. Try rerunning the clustering from new
random positions and observe how the
centers conquer the territory. Exciting,
isn’t it?

Keep pressing Recompute Centroids and Reassign Membership until

the plot stops changing. With this simple, two-dimensional data it will

take just a few iterations; with more points and features, it can take

longer, but the principle is the same.

How do we set the initial number of clusters? That’s simple: we

choose the number that gives the optimal clustering.

Well then, how do we define the optimal clustering? This one is a

bit harder. We want small distances between points in the same cluster

and large distances between points from di↵erent clusters. Pick one

24 data mining: a hands-on course at baylor college of medicine

point, and let A be its average distance to the data points in the same

cluster and let B represent the average distance to the points from

the closest other cluster. (The closest cluster? Just compute B for all

other clusters and take the lowest value.) The value (B - A) / max(A,

B) is called silhouette; the higher the silhouette, the better the point

fits into its cluster. The average silhouette across all points is the

silhouette of the clustering. The higher the silhouette, the better the

clustering.

Now that we can assess the quality of clustering, we can run k-

means with di↵erent values of parameter k (number of clusters) and

select k which gives the largest silhouette.

For this, we abandon our educational toy and connect Paint Data to

the widget k-Means. We tell it to find the optimal number of clusters

between 2 and 8, as scored by the Silhouette.

k-means clustering 25

Works like a charm.

Except that it often doesn’t. First, the result of k-means clustering

depends on the initial selection of centers. With unfortunate selection,

it may get stuck in a local optimum. We solve this by re-running the

clustering multiple times from random positions and using the best

result. Second, the silhouette sometimes fails to correctly evaluate the

clustering. Nobody’s perfect.

Time to experiment. Connect the Scatter Plot to k-Means. Change

the number of clusters. See if the clusters make sense. Could you paint

the data where k-Means fails? Or where it works really well?

Classification

We have seen the iris data before. We wanted to predict varieties basedWe call the variable we wish to pre-
dict a target variable, or an outcome
or, in traditional machine learning ter-
minology, a class. Hence we talk about
classification, classifiers, classification
trees...

on measurements—but we actually did not make any predictions. We

observed some potentially interesting relations between the features

and the varieties, but have never constructed an actual model.

Let us create one now.

Something in this workflow is concep-
tually wrong. Can you guess what?

The data is fed into the Tree

widget, which infers a classifica-

tion model and gives it to the Pre-

dictions widget. Note that unlike

in our past workflows, in which

the communication between wid-

gets included only the data, we

here have a channel that carries

a predictive model.

The Predictions widget also re-

ceives the data from the File wid-

get. The widget uses the model to

make predictions about the data

and shows them in the table.

How correct are these predictions? Do we have a good model? How

can we tell?

But (and even before answering these very important questions),

what is a classification tree? And how does Orange create one? Is this

algorithm something we should really use?

So many questions to answer!

Classification Trees

In the previous lesson, we used a classification tree, one of the old- Classification trees were hugely popu-
lar in the early years of machine learn-
ing, when they were first independently
proposed by the engineer Ross Quin-
lan (C4.5) and a group of statisticians
(CART), including the father of ran-
dom forests Leo Brieman.

est, but still popular, machine learning methods. We like it since the

method is easy to explain and gives rise to random forests, one of the

most accurate machine learning techniques (more on this later). So,

what kind of model is a classification tree?

Let us load iris data set, build a tree (widget Tree) and visualize it

in a Tree Viewer.

We read the tree from top to

bottom. Looks like the column

petal length best separates the

iris variety setosa from the oth-

ers, and in the next step, petal

width then almost perfectly sepa-

rates the remaining two varieties.

Trees place the most useful fea-

ture at the root. What would be

the most useful feature? The fea-

ture that splits the data into two

purest possible subsets. It then

splits both subsets further, again

by their most useful features, and

keeps doing so until it reaches sub-

sets in which all data belongs to the same class (leaf nodes in strong

blue or red) or until it runs out of data instances to split or out of

28 data mining: a hands-on course at baylor college of medicine

useful features (the two leaf nodes in white).

We still have not been very explicit about what we mean by ”the

most useful” feature. There are many ways to measure the quality of

features, based on how well they distinguish between classes. We will

illustrate the general idea with information gain. We can compute this

measure in Orange using the Rank widget, which estimates the qualityThe Rank widget can be used on its
own to show the best predicting fea-
tures. Say, to figure out which genes
are best predictors of the phenotype in
some gene expression data set.

of data features and ranks them according to how informative they are

about the class. We can either estimate the information gain from the

whole data set, or compute it on data corresponding to an internal

node of the classification tree in the Tree Viewer. In the following

example we use the Sailing data set.

The Datasets widget is set to load the
Sailing data set. To use the second
Rank, select a node in the Tree Viewer.

Besides the information gain, Rank displays several other measures

(including Gain Ratio and Gini), which are often quite in agreement

and were invented to better handle discrete features with many di↵er-

ent values.

For the whole Sailing data set, Com-
pany is the most class-informative fea-
ture according to all measures shown.

classification trees 29

Here is an interesting combination of a Tree Viewer and a Scatter

Plot. This time, use the Iris data set. In the Scatter Plot, we first

find the best visualization of this data set, that is, the one that best

separates the instances from di↵erent classes. Then we connect the

Tree Viewer to the Scatter Plot. Data instances (particular irises)

from the selected node in the Tree Viewer are shown in the Scatter

Plot.

Careful, the Data widget needs to be
connected to the Scatter Plot’s Data
input, and Tree Viewer to the Scatter
Plot’s Data Subset input.

Just for fun, we have included a few other widgets in this workflow.

In a way, a Tree Viewer behaves like Select Rows, except that the rules

used to filter the data are inferred from the data itself and optimized

to obtain purer data subsets.

In the Tree Viewer we selected the
rightmost node. All data instances
coming to the selected node are high-
lighted in Scatter Plot.

Wherever possible, visualizations in Orange are designed to support

selection and passing of the data that applies to it. Finding interesting

data subsets and analyzing their commonalities is a central part of

explorative data analysis, a data analysis approach favored by the

data visualization guru Edward Tufte.

Model Inspection

Here’s another interesting combination of widgets: Tree Viewer and

Scatter Plot. In Scatter Plot, find the best visualization of this data

set, that is, the one that best separates instances from di↵erent classes.

Then connect Tree Viewer to Scatter Plot. Selecting any node of the

tree will output the corresponding data subset, which will be shown in

the scatter plot.

Just for fun, we have included

a few other widgets in this work-

flow. The Tree Viewer selects

data instances by inferring rules

from the data itself and optimiz-

ing to obtain purer data subsets.

Classification Accuracy

Now that we know what classification trees are, the next question

is what is the quality of their predictions. For beginning, we need to

define what we mean by quality. In classification, the simplest measure

of quality is classification accuracy expressed as the proportion of data accuracy = #{correct}
#{all}

instances for which the classifier correctly guessed the value of the class.

Let’s see if we can estimate, or at least get a feeling for, classification

accuracy with the widgets we already know.

Let us try this schema with the iris data

set. The Predictions widget outputs a data

table augmented with a column that in-

cludes predictions. In the Data Table wid-

get, we can sort the data by any of these two

columns, and manually select data instances

where the values of these two features are

di↵erent (this would not work on big data).

Roughly, visually estimating the accuracy of

predictions is straightforward in the Distri-

bution widget, if we set the features in view

appropriately.

For precise statistics of correctly and incorrectly classified examples

open the Confusion Matrix widget.

The Confusion Matrix shows 3 incor-
rectly classified examples, which makes
the accuracy (150� 3)/150 = 98%.

How to Cheat

At this stage, the classification tree looks

This lesson has a strange title and it is
not obvious why it was chosen. Maybe
you, the reader, should tell us what this
lesson has to do with cheating.

very good. There’s only one data point

where it makes a mistake. Can we mess up

the data set so bad that the trees will ulti-

mately fail? Like, remove any existing cor-

relation between features and the class? We

can! There’s the Randomize widget with class shu✏ing. Check out

the chaos it creates in the Scatter Plot visualization where there were

nice clusters before randomization!

Left: scatter plot of the Iris data set
before randomization; right: scatter
plot after shu✏ing 100% of rows. Fine. There can be no classifier that can model this mess, right?

Let’s make sure.

And the result? Here is a screenshot of

the Confusion Matrix.

Most unusual. Despite shu✏ing all the

classes, which destroyed any connection be-

tween features and the class variable, about

80% of predictions were still correct.

how to cheat 33

Can we further improve accuracy on the shu✏ed data? Let us try

to change some properties of the induced trees: in the Tree widget,

disable all early stopping criteria.

After we disable 2–4 check box in the
Tree widget, our classifier starts behav-
ing almost perfectly.

Wow, almost no mistakes now. How is this possible? On a class-

randomized data set?

In the build tree, there are 75 leaves. Remember, there are only 150
rows in the Iris data set.

To find the answer to this riddle, open the

Tree Viewer and check out the tree. How

many nodes does it have? Are there many

data instances in the leaf nodes?

Looks like the tree just memorized every

data instance from the data set. No wonder

the predictions were right. The tree makes

no sense, and it is complex because it simply

remembered everything.

Ha, if this is so, if a classifier remembers

everything from a data set but without dis-

covering any general patterns, it should per-

form miserably on any new data set. Let us

check this out. We will split our data set into

two sets, training and testing, train the clas-

sification tree on the training data set and

then estimate its accuracy on the test data

set.

Connect the Data Sampler widget
carefully. The Data Sampler splits the
data to a sample and out-of-sample (so
called remaining data). The sample
was given to the Tree widget, while the
remaining data was handed to the Pre-
dictions widget. Set the Data Sampler
so that the size of these two data sets
is about equal.

Let’s check how the Confusion Matrix looks after testing the clas-

sifier on the test data.

The first two classes are a complete fail. The predictions for ribo-

somal genes are a bit better, but still with lots of mistakes. On the

34 data mining: a hands-on course at baylor college of medicine

class-randomized training data our classifier fails miserably. Finally,

just as we would expect.

Confusion matrix if we estimate accu-
racy on a data set that was not used
in learning.

We have just learned that we need to train the classifiers on the

training set and then test it on a separate test set to really measure

performance of a classification technique. With this test, we can dis-

tinguish between those classifiers that just memorize the training data

and those that actually learn a general model.

Learning is not only memorizing. Rather, it is discovering patterns

that govern the data and apply to new data as well. To estimate the

accuracy of a classifier, we therefore need a separate test set. This

estimate should not depend on just one division of the input data set

to training and test set (here’s a place for cheating as well). Instead,

we need to repeat the process of estimation several times, each time

on a di↵erent train/test set and report on the average score.

Cross-Validation

Estimating the accuracy may depend on a particular split of

the data set. To increase robustness, we can repeat the mea-

surement several times, each time choosing a di↵erent subset

of the data for training. One such method is cross-validation.

It is available in Orange in the Test and Score widget.

Note that in each iteration, Test and Score will pick a part

of the data for training, learn the predictive model on this

data using some machine learning method, and then test the

accuracy of the resulting model on the remaining, test data

set. For this, the widget will need on its input a data set from

which it will sample the data for training and testing, and a

learning method which it will use on the training data set to construct

a predictive model. In Orange, the learning method is simply called a

learner. Hence, Test and Score needs a learner on its input. For geeks: a learner is an object that,
given the data, outputs a classifier.
Just what Test and Score needs.

This is another way to use the Tree widget. In the workflows from

the previous lessons we have used another of its outputs, called Model ;

its construction required data. This time, no data is needed for Tree,

because all that we need from it is a Learner.

Cross validation splits the data sets
into, say, 10 di↵erent non-overlapping
subsets we call folds. In each itera-
tion, one fold will be used for testing,
while the data from all other folds will
be used for training. In this way, each
data instance will be used for testing
exactly once.

In the Test and Score widget, the second column, CA, stands for

classification accuracy, and this is what we really care for for now.

Logistic Regression

Logistic regression is one of the best-known classifiers. The model

returns the probability of a class variable, based on input features.

First, it computes probabilities with a one-versus-all approach, mean-

ing that for a multiclass problem, it will take one target value and

treat all the rest as ”other”, e↵ectively transforming the problem to

binary classification.

Second, it tries to find an optimal plane that separates instances

with the target value from the rest. Then it uses logistic function to

transform the distance to the plane into probabilities. The further

away from the plane an instance will be, the higher the probability

it belongs to the class on that side of the plane. The closer it is to

the decision boundary (the plane), the more uncertain the prediction

becomes (i.e. it gets close to 0.5).

Can you guess what would the prob-
ability for belonging to the blue class
be for A, B, and C?

Logistic regression tries to find such a plane that all points from one

class are as far away from the boundary (in the correct direction) as

possible.

A great thing about Logistic Regression is that we can interpret

it with a Nomogram. Nomogram shows the importance of variables

for the model. The higher the variable is in the list, the greater its

importance. Also, the longer the line, the greater the importance. The

line corresponds to the coe�cient of the variable, which is then mapped

to the probability. You can drag the blue point on the line left or right,

decreasing or increasing the probability of the target class. This will

show you how di↵erent values a↵ect the outcome of the model.

logistic regression 37

Another characteristic of logistic regression is that it observes all

variables at once and takes the correlation into account. If some vari-

ables are correlated, their importance will be spread among them.

A not so great thing about logistic regression is that it operates with

planes, meaning that the model won’t work when the data cannot be

separated in such a way. Can you think of such a data set?

Random Forests

Random forests, a modeling technique intro-

duced in 2001, is still one of the best per-

forming classification and regression tech-

niques. Instead of building a tree by always

choosing the one feature that seems to sep-

arate best at that time, it builds many trees

in slightly random ways. Therefore the in-

duced trees are di↵erent. For the final pre-

diction the trees vote for the best class.

The Pythagorean Forest widget shows
us how random the trees are. If we
select a tree, we can observe it in a
Tree Viewer.

There are two sources of randomness: (1) training data is sampled

with replacement, and (2) the best feature for a split is chosen among

a subset of randomly chosen features.

Which features are the most important? The creators of random

forests also defined a procedure for computing feature importances

from random forests. In Orange, you can use it with the Rank widget.

Feature importance according to two
univariate measures (gain ratio and
gini index) and random forests. Ran-
dom forests also consider combina-
tions of features when evaluating their
importance.

Support Vector Machines

Support vector machines (SVM) are another example of linear classi-

fiers, similar to logistic or linear regression. However, SVM can over-

come splitting the data by a plane by using the so-called kernel trick.

This means the hyperplane (decision boundary) can be transformed

to a higher-dimensional space, which can fit the data nicely. In such

a way, SVM becomes a non-linear classifier and can fit more complex

data sets.

Decision boundary of a linear regres-
sion classifier.

Decision boundary of a support vector
machine classifier with an RBF kernel.

The magic of SVM (and other methods that can use kernels, and

are thus called kernel methods) is that they will implicitly find a trans-

formation into a (usually infinite-dimensional) space, in which the dis-

tances between objects are such as prescribed by the kernel, and draw

a hyperplane in this space.

Abstract talking aside, SVM with di↵erent kernels can split the data

not by ordinary hyperplanes, but with more complex curves. The com-

plexity of the curve is decided by the kernel type and by the arguments

given to the algorithm, like the degree and coe�cients, and the penalty

for misclassifications.

k-Nearest Neighbors

The idea of k-nearest neighbors is simple - find k instances that are the

most similar to each data instance. We make the prediction or estimate

probabilities based on the classes of these k instances. For classifica-

tion, the final label is the majority label of k nearest instances. For

regression, the final value is the average value of k nearest instances.

kNN classifier looks at k nearest neigh-
bors, say 5, of instance X. 4 neighbors
belong to the red class and 1 to the
blue class. X will thus be classified as
red with 80% probability.

Unlike most other algorithms, kNN does not construct a model but

just stores the data. This kind of learning is called lazy learning.

The advantage of kNN algorithm is that it can successfully model

the data, where classes are not linearly separably. It can also be re-

trained quickly, because new data instances e↵ect model only locally.

However, the first training is can be slow for large data sets, as the

model has to estimate k distances for data instance.

Naive Bayes

Naive Bayes is also a classification method. To see how naive Bayes Naive Bayes assumes class-wise inde-
pendent features. For a data set where
features would actually be indepen-
dent, which rarely happens in practice,
the naive Bayes would be the ideal
classifier.

works, we will use a data set on passengers’ survival in the Titanic

disaster of 1912. The Titanic data set describes 2201 passengers, with

their tickets (first, second, thirds class or crew), age and gender.

We inspect naive Bayes models with the Nomogram widget. There,

we see a scale ’Points’ and scales for each feature. Below we can see

probabilities. Note the ’Target class’ in upper left corner. If it is set to

’yes’, the widget will show the probability that a passenger survived.

The nomogram shows that gender was the most important feature

for survival. If we move the blue dot to ’female’, the survival probabil-

ity increases to 73%. Furthermore, if that woman also travelled in the

first class, she survived with probability of 90%. The bottom scales

show the conversion from feature contributions to probability.

According to the probability the-
ory individual contributions should be
multiplied. Nomograms get around
this by working in a log-space: a sum
in the log-space is equivalent to multi-
plication in the original space. There-
fore nomograms sum contributions (in
the log-space) of all feature values and
then convert them back to probability.

Cheating with

Feature Subset Selection

We will borrow a gene expression data
set from Gene Expression Omnibus for
our example. There is a particular wid-
get in the Orange bioinformatics add-
on that we could use to fetch this and
similar data sets. Instead, we will rely
on the GEO data set gds360 available
at http://file.biolab.si/dataset

s/gds360.pkl.

Consider a typical gene expression data set with samples in rows and

genes expressions in columns. These data sets are usually fat; they

include more genes than samples. Fat data sets are almost typical for

systems biology. When we label the samples with phenotype, and our

task is phenotype classification, many features (genes) will be irrele-

vant. Most often, only a few features correlate with class. So why not

simply select a set of most informative features first and then do the

whole analysis? At least cross-validation will then work much faster,

as the model inference algorithms will deal with much smaller data

tables. Cool. What a nice trick! Let’s try it out in the following

workflow.

The workflow above uses the data preprocessing widget, which we

have configured to select the five most informative features.

Observe the classification accuracy obtained on the original data

set and the data set with the five best-selected features. What is

happening? What is there such di↵erence in classification accuracy?

http://file.biolab.si/datasets/gds360.pkl
http://file.biolab.si/datasets/gds360.pkl

Cheating Even Works on

Randomized Data

We can push the example from our previous lesson to the extreme. We

will randomize the classification data. We will take the column with

the class values and randomly permute it. We will use the Randomize

widget to do this.

Later, we will classify this data set. We expect low classification

accuracy on randomized data set. Then, we will select five features

that are most associated with the class. Even though we randomly

permuted the classes, there have to be some features that are weakly

correlated with the class. Simply because we have tens of thousands of

features, and we have only a few samples. There are enough features to

associate with class simply by chance. Finally, we will score a random

forest on a randomized data set with selected features.

Compare the scores reported by cross-validation on di↵erent data

sets in this pipeline. Why is the accuracy in the final one relatively

high? Would adding more “most informative features” improve or

degrade the cross-validated performance on a randomized data set? Instead of selecting the five most infor-
mative features, you can further reduce
this number. Say, to two most infor-
mative features. What happens? Why
does accuracy rise after this change?

How to Correctly Perform

Test and Score?

To put it simply: never, in any way, transform the data before cross-

validation. Any transformation should happen within the cross-validation

loop, first on the training set and, if required, on a test set. In a sim-

ple form: it’s ok to transform the data, but we should change the data

independently on the train, and the test set and the transformation on

the test set should not use the information about the class value. Data

imputation could be an example of such an operation, but it should

be carried out separately for the train and test set and not consider

classes.

So how do we then correctly preprocess data in Orange? The idea

of reducing the number of features before inferring a predictive model

may still be appealing, now that we know we can use it on training

data sets (leaving the test set alone). Following are two workflows that

do this correctly.The writing on the right looks straight-
forward. But actually one needs to
be extremely careful not to succumb
to overfitting when reporting results
of cross-validation tests. The litera-
ture on systems biology is polluted with
reporting on overly optimistic results,
and high impact factors provide no
guarantee that studies were carried out
correctly (in fact, due to a lack of re-
viewers from the field of machine learn-
ing, mistakes likely stay overlooked).

Simon et al. (2003) provides a great
read on this topic. He found that many
of the early papers in gene expression
analysis reported high accuracy simply
due to overfitting.

In this first workflow, we gave the Test and Score widget a prepro-

cessor – we used feature selection in this example. The Test and Score

uses it correctly only on the training sets. This type of workflow is

preferred if we would like to test the e↵ect of preprocessing on several

di↵erent learning algorithms.

Alternatively, we can include a preprocessor in a learning method.

The workflow now calls the preprocessor on the training data set just

how to correctly perform test and score? 45

before this learner performs inference of the predictive model.

The Preprocess widget does not nec-
essary require a data set on its input.
An alternative use of this widget is to
output a method for data preprocess-
ing, which we can then pass to either
a learning method or to a widget for
cross validation.

Can you extend this workflow to such an extent that you can test

both a learner with preprocessing by feature subset selection and the

same learner without this preprocessing? How does the number of se-

lected features a↵ect the cross-validated accuracies? Does the success

of this particular combination of machine learning techniques depend

on the input data set? Does it work better for some machine learn-

ing algorithms? Try its performance on k-nearest neighbors learner

(warning: use small data sets, this classifier could be very slow). This is not the first time we have used
a widget that instead of a data passes
forward a computation method. All the
learners, like Random Forest, do so. A
learner could get data on its input and
pass a classifier to its output, or simple
pass an instance of itself, that is, pass a
learning algorithm to whichever widget
could use it. For instance, to the Test
and Score widget.

Somehow, in a shy way, we have also introduced a technique for

feature selection and pointed to its possible utility for classification

problems. Feature subset selection, or FSS in short, was and still

is, to some extent, an essential topic in machine learning. Modern

classification algorithms, though, perform it implicitly and can deal

with many features without the help of external procedures for their

advanced selection. Random forest is one such technique.

Classification Model Scoring

In multiple-choice exams, they grade you according to the number

of correct answers. The same goes for classifiers: the more correct

predictions they make, the better they are. Nothing could make more

sense. Right?

Maybe not. Consider Dr. Smith. He is a specialist for specific

diseases, and his diagnosis is correct in 98% of the cases. Would you

consider visiting him if you have some symptoms related to his spe-

cialty?

Not necessarily. Dr. Smith’s specialty is rare diseases. Two out of

a hundred of his patients have it, and, being lazy, he always dismisses

everybody as healthy. His predictions are worthless — although highly

accurate. Classification accuracy is not an absolute measure, which

we can judge out of context. At the very least, we have to compare it

with the frequency of the majority class, which is, in the case of rare

diseases, quite, hm, substantial.

For instance, on the GEO data set GDS 4182, the classification

tree achieves 79% cross-validation accuracy, which may be reasonably

good. Let us compare this with the Constant model, which implements

Dr. Smith’s strategy by always predicting the majority. It gets 83%.

Classification trees are not so good after all, are they?
What do other columns in Test and
Score widget represent? Keep reading!

On the other hand, the accuracy of classification trees on GDS 3713

is about 71%, which seems rather good compared to the 50% achieved

by predicting the majority.

The problem with classification accuracy goes deeper, though. Clas-

sifiers usually make predictions based on the probabilities they com-

pute. If a data instance belongs to class healthy with a probability of

80% and disseased with a probability of 20%, we classified it as healthy.

Such classification makes sense, right?

Classes versus probabilities as esti-
mated by logistic regression. Can you
replicate this image?

Maybe not, again. Say you fall down the stairs, and your leg hurts.

You open Orange, enter some data into your favorite model and com-

pute a 20% of having your leg broken. So you assume your leg is all

right, and you take an aspirin. Or perhaps not?

What if the chance of a broken leg was 10%? 5%? 0.1%? Say we

classification model scoring 47

decide that any leg with a 1% chance of being broken will be classified

as broken. What will this do to our classification threshold? It is going

to decrease badly — but we do not care. What do we do care about

then? What kind of “accuracy” is essential?

Not all mistakes are equal. We can summarize them in the Con- The numbers in the Confusion Matrix
have names. We can classify a data
instance as positive or negative; imag-
ine this as being positive or negative
when tested for some medical condi-
tion. This classification can be true
or false. So there are four options,
true positive (TP), false positive (FP),
true negative (TN), and false negative
(FN). Identify them in the table!

fusion Matrix. Here is one for logistic regression on the heart disease

data.

Logistic regression correctly classifies 145 healthy persons and 110

of the sick, the numbers on the diagonal. Classification accuracy is

then 255 out of 303, which is about 84%. Use the output from Confusion Matrix
as a subset for Scatter plot to explore
the data instances that were misclassi-
fied in a certain way.

Nineteen healthy people were unnecessarily scared. The opposite

error is worse: the heart problems of 29 persons went undetected. We

need to distinguish between these two kinds of mistakes.

We are interested in the probability that a person who has some

problem will be correctly diagnosed. There were 139 such cases, and

we correctly discovered 110. The proportion is 110/139 = 0.79. This

measure is called sensitivity or recall or true positive rate (TPR).

If you were interested only in sensitivity, though, here’s Dr. Smith’s

associate partner — wanting to be on the safe side, she considers ev-

erybody ill, so she has a perfect sensitivity of 1.0.

To counterbalance the sensitivity, we compute the opposite: what

is the proportion of correctly classified negative instances? 145 out of

164, that is, about 90%. This score is called specificity or true negative

rate. If you are interested in a complete list
of statistics, see the Wikipedia page on
Receiver operating characteristic, http
s://en.wikipedia.org/wiki/Receiv

er operating characteristic.

So, if the model classifies you as healthy, do you have a 90% chance

of actually being OK? No, it’s the other way around: 90% is the chance

of being classified as OK if you are OK. (Think about it, it’s not as

complicated as it sounds). If you’re interested in your chance of being

OK if the classifier tells you so, you look for the negative predictive

value. Then there’s also precision, the probability of being positive

if you are classified as such. And the fall-out and negative likelihood

ratio. There is a list of other indistinguishable fancy names for various

statistics, each useful for some purpose.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Choosing the Decision Threshold

The common property of scores from the previous lesson is that they

depend on the threshold for classifying an instance as positive. We can

balance between them by adjusting the threshold to find the required

sensitivity at an acceptable specificity. We can even assign costs (mon-

etary or not) to di↵erent kinds of mistakes and find the threshold with

the minimal expected cost.

A valuable tool to investigate the e↵ects of di↵erent thresholds is the

Receiver-Operating Characteristic curve. Don’t mind the (historical)

meaning of the name and just call it the ROC curve.

Here are the curves for logistic regression, SVM with linear kernels,

and naive Bayesian classifier on the same ROC plot.

The curves show how the sensitivity (y-axis) and specificity (x-axis,

but from right to left) change with di↵erent thresholds.

There exists, for instance, a threshold for logistic regression (theSounds complicated? If it helps: per-
haps you remember the term para-
metric curve from some of your math
classes. ROC is a parametric curve
where x and y (the sensitivity and 1 -
specificity) are a function of the same
parameter, the decision threshold.

green curve) that gives us 0.65 sensitivity at the specificity of 0.95

(the curve shows 1 - specificity). Or 0.9 sensitivity with a specificity

of 0.8. Or a sensitivity of (almost) 1 with a specificity of somewhere

around 0.3.

The optimal point would be at the top left. The diagonal represents

the behavior of a random guessing classifier.

Which of the three classifiers is the best? It depends on the speci-

ficity and sensitivity we want; at some points, we prefer logistic regres-

sion and, at other points, the naive bayesian classifier. SVM doesn’t

cut it anywhere.

A popular score derived from the ROC curve is called an area under

curve, or AUC for short. It measures, well, the area under the curve.

ROC curve. If the curve goes straight up and then right, the area is

choosing the decision threshold 49

1; we can not reach optimal AUC in practice. If the classifier guesses

at random, the curve follows the diagonal, and AUC is 0.5. Anything

below that is equivalent to guessing or bad luck.

AUC has a kind of absolute scale. As a rule of thumb: 0.6 is bad, 0.7

is bearable, 0.8 is publishable, and anything above 0.95 is suspiciously

good.

AUC also has an excellent probabilistic interpretation. Say that we

are given two data instances, and we are told that one is positive and

the other is negative. We use the classifier to estimate the probabilities

of being positive for each instance and decide that the one with the

highest probability is positive. It turns out that the probability that

such a decision is correct equals the AUC of this classifier. Hence, AUC

measures how well the classifier discriminates between the positive and

negative instances.

From another perspective: if we use a classifier to rank data in-

stances, then AUC of 1 signifies a perfect ranking, an AUC of 0.5 a

random ranking, and an AUC of 0 an ideal reversed ranking.

Linear Regression

For a start, let us construct a very simple data set. It will contain justIn the Paint Data widget, remove the
C2 label from the list. If you have ac-
cidentally left it while painting, don’t
despair. The class variable will appear
in the Select Columns widget, but you
can ”remove” it by dragging it into the
Available Variables list.

one continuous input feature (let’s call it x) and a continuous class

(let’s call it y). We will use Paint Data, and then reassign one of the

features to be a class using Select Columns and moving the feature

y from ”Features” to ”Target Variable”. It is always good to check

the results, so we are including Data Table and Scatter Plot in the

workflow at this stage. We will be modest this time and only paint 10

points and use Put instead of the Brush tool.

We want to build a model that predicts the value of the target

variable y from the feature x. Say that we would like our model to be

linear, to mathematically express it as h(x) = ✓0+✓1x. Oh, this is the

equation of a line. So we would like to draw a line through our data

points. The ✓0 is then an intercept, and ✓1 is a slope. But there are

many di↵erent lines we could draw. Which one is the best? Which

one is the one that fits our data the most? Are they the same?

The question above requires us to define what a good fit is. Say, this

could be the error the fitted model (the line) makes when it predicts

the value of y for a given data point (value of x). The prediction is

h(x), so the error is h(x)�y. We should treat the negative and positive

linear regression 51

errors equally, plus – let us agree – we would prefer punishing larger

errors more severely than smaller ones. Therefore, we should square

the errors for each data point and sum them up. We got our objec- Do not worry about the strange name
of the Polynomial Regression, we will
get there in a moment.

tive function! It turns out that there is only one line that minimizes

this function. The procedure that finds it is called linear regression.

For cases where we have only one input feature, Orange has a special

widget in the Educational add-on called Polynomial Regression.

Looks ok, except that these data points do not appear exactly on

the line. We could say that the linear model is perhaps too simple

for our data set. Here is a trick: besides the column x, the widget

Polynomial Regression can add columns x2, x3, . . . , xn to our data

set. The number n is a degree of polynomial expansion the widget

performs. Try setting this number to higher values, say to 2, and then

3, and then, say, to 8. With the degree of 3, we are then fitting the

data to a linear function h(x) = ✓0 + ✓1x+ ✓2x2 + ✓3x3.

52 data mining: a hands-on course at baylor college of medicine

The trick we have just performed is polynomial regression, adding

higher-order features to the data table and then performing linear re-

gression. Hence the name of the widget. We get something reasonable

with polynomials of degree 2 or 3, but then the results get wild. With

higher degree polynomials, we overfit our data.

It is quite surprising to see that the lin-
ear regression model can fit non-linear
(univariate) functions. It can fit the
data with curves, such as those on the
figures. How is this possible? No-
tice, though, that the model is a hy-
perplane (a flat surface) in the space
of many features (columns) that are
the powers of x. So for the degree 2,
h(x) = ✓0 + ✓1x + ✓2x2 is a (flat) hy-
perplane. The visualization gets curvy
only once we plot h(x) as a function of
x.

Overfitting is related to the complexity of the model. In polynomial

regression, the parameters ✓ define the model. With the increased

number of parameters, the model complexity increases. The simplest

model has just one parameter (an intercept), ordinary linear regression

has two (an intercept and a slope), and polynomial regression models

have as many parameters as the polynomial degree. It is easier to

overfit the data with a more complex model, as it can better adjust

to the data. But is the overfitted model discovering the true data

patterns? Which of the two models depicted in the figures above would

you trust more?

Regularization

There has to be some cure for overfitting. Something that helps us

control it. To find it, let’s check the values of the parameters ✓ under

di↵erent degrees of polynomials.

With smaller degree polynomials, values of ✓ stay small, but then

as the degree goes up, the numbers get huge.

Which inference of linear model would
overfit more, the one with high � or
with low �? What should the value of
� be to cancel regularization? What if
the value of � is high, say 1000?

More complex models can fit the training data better. The fitted

curve can wiggle sharply. The derivatives of such functions are high, so

the coe�cients ✓ need be. If only we could force the linear regression

to infer models with a small value of coe�cients. Oh, but we can.

Remember, we have started with the optimization function the linear

regression minimizes — the sum of squared errors. We could add to

this a sum of all ✓ squared. And ask the linear regression to minimize

both terms. Perhaps we should weigh the part with ✓ squared, say,

with some coe�cient �, to control the level of regularization.

Here we go: we just reinvented regularization, which helps machine

learning models not overfit the training data. To observe the e↵ects

of regularization, we can give Polynomial Regression to our linear re-

gression learner, which supports these settings.

54 data mining: a hands-on course at baylor college of medicine

The Linear Regression widget provides two types of regularization.

Ridge regression is the one we have talked about and minimizes theInternally, if no learner is present on
its input, the Polynomial Regression
widget would use just ordinary, non-
regularized linear regression.

sum of squared coe�cients ✓. Lasso regression minimizes the sum of

the absolute value of coe�cients. Although the di↵erence may seem

negligible, the consequences are that lasso regression may result in a

large proportion of coe�cients ✓ being zero, in this way performing

feature subset selection.

Now for the test. Increase the degree of polynomial to the max.

Use Ridge Regression. Does the inferred model overfit the data? How

does the degree of overfitting depend on regularization strength?

Regularization and Accuracy

on a Test Set

Overfitting hurts. Overfit models fit the training data well but can

perform miserably on new data. Let us observe this e↵ect in regression.

We will use hand-painted data set, split it into the training (50%)

and test (50%) data set, polynomially expand the training data set to

enable overfitting and build a model. We will test the model on the

(seen) training data and the (unseen) held-out data. Paint about 20 to 30 data instances.
Use the attribute y as the target vari-
able in Select Columns. Split the data
50:50 in Data Sampler. Cycle between
test on train or test data in Test and
Score. Use ridge regression to build a
linear regression model.

Now we can vary the regularization strength in Linear Regression

and observe the accuracy in Test and Score. For accuracy scoring,

we will use RMSE, root mean squared error, which is computed by

observing the error for each data point, squaring it, averaging this

across all the data instances, and taking a square root.

The core of this lesson is to compare the error on the training and

test set while varying the level of regularization. Remember that regu-

larization controls overfitting. The more we regularize, the less tightly

we fit the model to the training data. So for the training set, we expect

the error to drop with less regularization and more overfitting. The

error on the training data increases with more regularization and less

fitting. We expect no surprises here. But how does this play out on the

test set? Which sides minimizes the test-set error? Or is the optimal

level of regularization somewhere in between? How do we estimate

this level of regularization from the training data alone?

Orange is currently not equipped with the fitting of meta parame-

ters, like the degree of regularization, and we need to find their optimal

values manually. At this stage, it su�ces to say that we must infer

meta parameters from the training data set without touching the test

data. If the training data set is su�ciently large, we can split it into

a set for training the model and a data set for validation. Again, Or-

ange does not support such optimization yet, but it will sometime in

the future. :)

Regularization

Enough painting. Now for the real data. We will use a data set thatDownload the methylation data set
from http://file.biolab.si/datas

ets/methylation.pkl.gz. Predictions
of age from methylation profile were in-
vestigated by Horvath (2013) Genome
Biology 14:R115.

includes human tissues from subjects of di↵erent ages. The tissues

were profiled by measurements of DNA methylation, a mechanism for

cells to regulate gene expression. Methylation of DNA is scarce when

we are young and gets more abundant as we age. We have prepared

a data set where the degree of methylation was expressed per gene.

Let us test if we can predict the age from the methylation profile -

and if we can do this better than by just predicting the average age of

subjects in the training set.

This workflow looks familiar and is similar to those for classification

problems—-the Test and Score widget reports on statistics we have

not seen before. MAE, for one, is the mean average error. As forUsing other learners, like random
forests, takes a while on this data set.
But you may try to sample the fea-
tures, obtain a smaller data set, and
try various regression learners.

classification, we have used cross-validation. Mean average error was

computed only on the test data instances and averaged across ten

cross-validation runs. The results indicate that our modeling technique

misses the age by about five years, which is a much better result than

predicted by the mean age in the training set.

http://file.biolab.si/datasets/methylation.pkl.gz.
http://file.biolab.si/datasets/methylation.pkl.gz.

Evaluating Regression

The last lessons quickly introduced scoring for regression and essential

measures such as RMSE and MAE. In classification, the confusion ma-

trix was an excellent addition to finding misclassified data instances.

But the confusion matrix could only be applied to discrete classes.

Before Orange gets some similar for regression, one way to find mis-

classified data instances is through scatter plot! This workflow visualizes the predictions
that we have constructed on the train-
ing data. How would you change the
widget to use a separate test set?
Hint: The Sample widget can help.

We can play around with this workflow by painting the data such

that the regression would perform well on the blue data point and fail

on the red outliers. In the scatter plot, we can check if the predicted

and true class di↵erence was what we had expected.

A similar workflow would work for any data set—for instance, the

58 data mining: a hands-on course at baylor college of medicine

housing data set (from Orange distribution). Say, just like above, we

would like to plot the relationship between true and predicted contin-

uous class, but would like to add information on the absolute error the

predictor makes. Where is the error coming from? We need a new

column. The Feature Constructor widget (albeit a bit geekish) comes

to the rescue.

In the Scatter Plot, we can now select the data where the predictor

erred substantially and explore the results further.We could, in principle, also mine the
errors to see if we can identify data in-
stances for which this was high. But
then, if this is so, we could have
improved predictions at such regions.
Like, construct predictors that predict
the error. Creating such predictors
looks weird. Could we then also build
a predictor that predicts the error of
the predictor that predicts the error?
Strangely enough, such ideas have re-
cently led to something called Gradi-
ent Boosted Trees, which are nowa-
days among the best regressors. Check
them out using the Gradient Boosting
widget.

Feature Scoring and Selection

Linear regression infers a model that estimates the class, a real-valued

feature, as a sum of products of input features and their weights. Con-

sider the data on prices of imported cars in 1985. Inspecting this data

set in a Data Table shows that some features, like fuel-system, engine-

type, and many others, are discrete. Linear regression only works with

numbers. In Orange, linear regression will automatically convert all

discrete values to numbers, often using several features to represent a

single discrete feature. We also do this conversion manually by using

the Continuize widget.

Before continuing, you should check what Continuize does and how

it converts the nominal features into real-valued features. The table

below should provide su�cient illustration.

Now to the core of this lesson. Our workflow reads the data con-

tinuizes it such that we also normalize all the features to bring them to

equal scale. We then load the data into the Linear Regression widget

and check out the feature coe�cients in the Data Table.

In Linear Regression, we will use L1 regularization. Compared to

L2 regularization, which aims to minimize the sum of squared weights,

L1 regularization is rougher: it minimizes the sum of absolute values

of the weights. The result of this “roughness” is that many of the

60 data mining: a hands-on course at baylor college of medicine

features will get zero weights. But this feature elimination may also

be exactly what we want. We want to select only the most important

features and see how the model that uses only a smaller subset of

features behaves. Also, this smaller set of features is ranked. Engine

size is a huge factor in the pricing of our cars, and so is the make,

where Porsche, Mercedes, and BMW cost more than other cars (ok,

no news here).

We should notice that the number of features with non-zero weightsWe care about features with sub-
stantial weights, regardless of their
sign. Therefore, we should change
the workflow to compute and show the
data features by their absolute weight.
Could you change the workflow accord-
ingly? Hint: use the Feature Construc-
tion widget.

varies with regularization strength. Stronger regularization would re-

sult in fewer features with non-zero weights.

Principal Component Analysis

Which of the following three scatter plots (showing x vs. y, x vs. z and

y vs. z) for the same three-dimensional data gives us the best picture

about the actual layout of the data in space?

Yes, the first scatter plot looks very useful: it tells us that x and

y are highly correlated and that we have three clusters of somewhat

irregular shape. But remember: this data is three dimensional. What

is we saw it from another, perhaps better perspective?

Let’s make another experiment. Go to https://in-the-sky.org

/ngc3d.php, disable Auto-rotate and Show labels and select Zoom to

show Local Milky Way. Now let’s rotate the picture of the galaxy to

find the layout of the stars.

Think about what we’ve done. What are the properties of the best

projection?

We want the data to be as spread out as pos-

sible. If we look from the direction parallel to

the galactic plane, we see just a line. We lose

one dimension, essentially keeping just a single

coordinate for each star. (This is unfortunately

exactly the perspective we see on the night sky:

most stars are in the bright band we call the

milky way, and we only see the outliers.) Among

all possible projections, we attempt to find the

one with the highest spread across the scatter

plot. This projection may not be (and usually

isn’t) orthogonal to any axis; it may be a pro-

jection to an arbitrary plane.

https://in-the-sky.org/ngc3d.php
https://in-the-sky.org/ngc3d.php

62 data mining: a hands-on course at baylor college of medicine

We again talk about two dimensional projection only for the sake

of illustration. Imagine that we have ten thousand dimensional data

and we would like, for some reason, keep just ten features. Yes, we

can rank the features and keep the most informative, but what if these

are correlated and tell us the same thing? Or what if our data does

not have any target variable: with what should the ”good features” be

correlated? And what if the optimal projection is not aligned with the

axes at all, so ”good” features are combinations of the original ones?

We can do the same reasoning as above: we want to find a 10-

dimensional (for the sake of examples) projection in which the data

points are as spread as possible.

How do we do this? Let’s go back to our everyday’s three dimen-

sional world and think about how to find a two-dimensional projection.

Imagine you are observing a swarm of flies; your data are their

exact coordinates in the room, so the position of each fly is described

by three numbers. Then you discover that your flies actually fly in a

formation: they are (almost) on the same line. You could then describe

the position of each fly with a single number that represents the fly’s

position along the line. Plus, you need to know where in the space the

line lies. We call this line the first principal component. By using it,

we reduce the three-dimensional space into a single dimension.

After some careful observation, you notice the flies are a bit spread

in one other direction, so they do not fly along a line but along a band.

Therefore, we need two numbers, one along the first and one along the

— you guessed it — second principal component.

It turns out the flies are actually also spread in the third direction.

Thus you need three numbers after all.

Or do you? It all depends on how spread they are in the second and

in the third direction. If the spread along the second is relatively small

in comparison with the first, you are fine with a single dimension. If

not, you need two, but perhaps still not three.

Let’s step back a bit: why would one who carefully measured ex-

pressions of ten thousand genes want to throw most data away and

reduce it to a dozen dimensions? The data, in general, may not and

does not have as many dimensions as there are features. Say you have

an experiment in which you spill di↵erent amounts of two chemicals

over colonies of amoebas and then measure the expressions of 10.000

genes. Instead of flies in a three-dimensional space, you now profile

colonies in a 10,000-dimensional space, the coordinates correspond-

ing to gene expressions. Yet if expressions of genes depend only on

the concentrations of these two chemicals, you can compute all 10,000

numbers from just two. Your data is then just two-dimensional.

principal component analysis 63

A technique that does this is called Principle Components Analysis,

or PCA. The corresponding widget is simple: it receives the data and

outputs the transformed data.

The widget allows you to select the number of components

and helps you by showing how much information (technically:

explained variance) you retain with respect to the number of

components (brownish line) and the amount of information

(explained variance) in each component.

The PCA on the left shows the scree diagram for brown-

selected data. Set like this, the widget replaces the 80 features

with just seven - and still keeping 82.7% of information. (Note: disable

”Normalize data” checkbox to get the same picture.) Let us see a

scatter plot for the first two components.

64 data mining: a hands-on course at baylor college of medicine

The axes, PC1 and PC2, do not correspond to particular features in

the original data, but to their linear combination. What we are looking

at is a projection onto the plane, defined by the first two components.

When you consider only two components, you can imagine that PCA

puts a hyperplane into multidimensional space and projects all data

into it.

Note that this is an unsupervised method: it does not care about

the class. The classes in the projection may be well separated or not.

Let’s add some colors to the points and see how lucky we are this time.

The data separated so well that these two dimensions alone may

su�ce for building a good classifier. No, wait, it gets even better. The

data classes are separated well even along the first component. So we

should be able to build a classifier from a single feature!

principal component analysis 65

In the above schema we uses the ordinary Test and Score widget,

but renamed it to ”Test on original data” for better understanding of

the workflow.

On the original data, logistic regression gets 98% AUC and clas-

sification accuracy. If we select just a single component in PCA, we

already get a 93%, and if we take two, we get the same result as on

the original data.

PCA is thus useful for multiple purposes. It can simplify our data by

combining the existing features to a much smaller number of features

without losing much information. The directions of these features

may tell us something about the data. Finally, it can find us good

two-dimensional projections that we can observe in scatter plots.

Mapping the Data

Imagine a foreign visitor to the US who knows nothing about the US

geography. He doesn’t even have a map; the only data he has is a

list of distances between the cities. Oh, yes, and he attended the

Introduction to Data Mining.

If we know distances between the cities, we can cluster them.For this example we retrieved the
data from http://www.mapcrow.

info/united states.html, re-
moved the city names from the first
line and replaced it with ”31 labelled”.

The file is available at http://file.b
iolab.si/files/us-cities.dst.zip.
To load it, unzip the file and use the
File Distance widget.

How much sense does it make? Austin and San Antonio are closer

to each other than to Houston; the tree is then joined by Dallas. On

the other hand, New Orleans is much closer to Houston than to Miami.

And, well, good luck hitchhiking from Anchorage to Honolulu.

As for Anchorage and Honolulu, they are leftovers; when there were

only three clusters left (Honolulu, Anchorage and the big cluster with

everything else), Honolulu and Anchorage were closer to each other

than to the rest. But not close — the corresponding lines in the den-

drogram are really long.

The real problem is New Orleans and San Antonio: New Orleans

is close to Atlanta and Memphis, Miami is close to Jacksonville and

http://www.mapcrow.info/united_states.html
http://www.mapcrow.info/united_states.html
http://file.biolab.si/files/us-cities.dst.zip
http://file.biolab.si/files/us-cities.dst.zip

mapping the data 67

Tampa. And these two clusters are suddenly more similar to each

other than to some distant cities in Texas. We can’t run k-means clustering on
this data, since we only have distances,
and k-means runs on real (tabular)
data. Yet, k-means would have the
same problem as hierarchical cluster-
ing.

In general, two points from di↵erent clusters may be more similar

to each other than to some points from their corresponding clusters.

To get a better impression about the physical layout of cities, people

have invented a better tool: a map! Can we reconstruct a map from

a matrix of distances? Sure. Take any pair of cities and put them on

a paper with the distance corresponding to some scale. Add the third

city and put it at the corresponding distance from the two. Continue

until done. Excluding, for the sake of scale, Anchorage, we get the

following map.

We have not constructed this map manually, of course. We used a

widget called MDS, which stands for Multidimensional scaling.

It is actually a rather exact map of the US from the Australian

perspective. You cannot get the orientation from a map of distances,

but now we have a good impression about the relations between cities.

It is certainly much better than clustering.

68 data mining: a hands-on course at baylor college of medicine

Remember the clustering of animals? Can we draw a map of ani-

mals? Does the map make any sense? Are similar animals together?

Color the points by the types of animals and you should see.

The map of the US was accurate: one can put the points in a plane

so that the distances correspond to actual distances between cities.

For most data, this is usually impossible. What we get is a projection

(a non-linear projection, if you care about mathematical finesses) of

the data. You lose something, but you get a picture.

The MDS algorithm does not always find the optimal map. You

may want to restart the MDS from random positions. Use the slider

”Show similar pairs” to see whether the points that are placed together

(or apart) actually belong together. In the above case, the honeybee

belongs closer to the wasp, but could not fly there as in the process of

optimization it bumped into the hostile region of flamingos and swans.

Image Embedding

Every data set so far came in the matrix (tabular) form: objects (say,

tissue samples, students, flowers) were described by row vectors repre-

senting a number of features. Not all the data is like this; think about

collections of text articles, nucleotide sequences, voice recordings or

images. It would be great if we could represent them in the same This depiction of deep learning network
was borrowed from http://www.amax

.com/blog/?p=804
matrix format we have used so far. We would turn collections of, say,

images, into matrices and explore them with the familiar prediction or

clustering techniques.

Until very recently, finding use-

ful representation of complex ob-

jects such as images was a real

pain. Now, technology called

deep learning is used to develop

models that transform complex

objects to vectors of numbers.

Consider images. When we,

humans, see an image, our neu-

ral networks go from pixels, to

spots, to patches, and to some

higher order representations like

squares, triangles, frames, all the

way to representation of complex

objects. Artificial neural net-

works used for deep learning em-

ulate these through layers of com-

putational units (essentially, lo-

gistic regression models and some

other stu↵ we will ignore here).

If we put an image to an input

of such a network and collect the

outputs from the higher levels, we get vectors containing an abstrac-

tion of the image. This is called embedding.

Deep learning requires a lot of data (thou-

sands, possibly millions of data instances) and

processing power to prepare the network. We

will use one which is already prepared. Even

so, embedding takes time, so Orange doesn’t do

it locally but uses a server invoked through the

Image Embedding widget.

http://www.amax.com/blog/?p=804
http://www.amax.com/blog/?p=804

70 data mining: a hands-on course at baylor college of medicine

Image embedding describes the images with a set of 2048 features

appended to the table with meta features of images.

We have no idea what these features are, except that they repre-Images are available at http://file.b
iolab.si/images/domestic-animals

.zip
sent some higher-abstraction concepts in the deep neural network (ok,

this is not very helpful in terms of interpretation). Yet, we have just

described images with vectors that we can compare and measure their

similarities and distances. Distances? Right, we could do clustering.

Let’s cluster the images of animals and see what happens.

To recap: in the workflow above we have loaded the images from the

local disk, turned them into numbers, computed the distance matrix

containing distances between all pairs of images, used the distances

for hierarchical clustering, and displayed the images that correspond

to the selected branch of the dendrogram in the Image Viewer. We

used cosine similarity to assess the distances (simply because the den-

drogram looked better than with the Euclidean distance).

http://file.biolab.si/images/domestic-animals.zip
http://file.biolab.si/images/domestic-animals.zip
http://file.biolab.si/images/domestic-animals.zip

image embedding 71

Even the lecturers of this course were surprised at the result. Beau-

tiful!

	Workflows in Orange
	Basic data exploration
	Saving your work
	Loading data sets
	Hierarchical Clustering
	Animal Kingdom
	Silhouettes
	k-Means Clustering
	Classification
	Classification Trees
	Model Inspection
	Classification Accuracy
	How to Cheat
	Cross-Validation
	Logistic Regression
	Random Forests
	Support Vector Machines
	k-Nearest Neighbors
	Naive Bayes
	Cheating with Feature Subset Selection
	Cheating Even Works on Randomized Data
	How to Correctly Perform Test and Score?
	Classification Model Scoring
	Choosing the Decision Threshold
	Linear Regression
	Regularization
	Regularization and Accuracy on a Test Set
	Regularization
	Evaluating Regression
	Feature Scoring and Selection
	Principal Component Analysis
	Mapping the Data
	Image Embedding

