
Cheating with

Feature Subset Selection

We will borrow a gene expression data
set from Gene Expression Omnibus for
our example. There is a particular wid-
get in the Orange bioinformatics add-
on that we could use to fetch this and
similar data sets. Instead, we will rely
on the GEO data set gds360 available
at http://file.biolab.si/dataset

s/gds360.pkl.

Consider a typical gene expression data set with samples in rows and

genes expressions in columns. These data sets are usually fat; they

include more genes than samples. Fat data sets are almost typical for

systems biology. When we label the samples with phenotype, and our

task is phenotype classification, many features (genes) will be irrele-

vant. Most often, only a few features correlate with class. So why not

simply select a set of most informative features first and then do the

whole analysis? At least cross-validation will then work much faster,

as the model inference algorithms will deal with much smaller data

tables. Cool. What a nice trick! Let’s try it out in the following

workflow.

The workflow above uses the data preprocessing widget, which we

have configured to select the five most informative features.

Observe the classification accuracy obtained on the original data

set and the data set with the five best-selected features. What is

happening? What is there such di↵erence in classification accuracy?

http://file.biolab.si/datasets/gds360.pkl
http://file.biolab.si/datasets/gds360.pkl

Cheating Even Works on

Randomized Data

We can push the example from our previous lesson to the extreme. We

will randomize the classification data. We will take the column with

the class values and randomly permute it. We will use the Randomize

widget to do this.

Later, we will classify this data set. We expect low classification

accuracy on randomized data set. Then, we will select five features

that are most associated with the class. Even though we randomly

permuted the classes, there have to be some features that are weakly

correlated with the class. Simply because we have tens of thousands of

features, and we have only a few samples. There are enough features to

associate with class simply by chance. Finally, we will score a random

forest on a randomized data set with selected features.

Compare the scores reported by cross-validation on di↵erent data

sets in this pipeline. Why is the accuracy in the final one relatively

high? Would adding more “most informative features” improve or

degrade the cross-validated performance on a randomized data set? Instead of selecting the five most infor-
mative features, you can further reduce
this number. Say, to two most infor-
mative features. What happens? Why
does accuracy rise after this change?

How to Correctly Perform

Test and Score?

To put it simply: never, in any way, transform the data before cross-

validation. Any transformation should happen within the cross-validation

loop, first on the training set and, if required, on a test set. In a sim-

ple form: it’s ok to transform the data, but we should change the data

independently on the train, and the test set and the transformation on

the test set should not use the information about the class value. Data

imputation could be an example of such an operation, but it should

be carried out separately for the train and test set and not consider

classes.

So how do we then correctly preprocess data in Orange? The idea

of reducing the number of features before inferring a predictive model

may still be appealing, now that we know we can use it on training

data sets (leaving the test set alone). Following are two workflows that

do this correctly.The writing on the right looks straight-
forward. But actually one needs to
be extremely careful not to succumb
to overfitting when reporting results
of cross-validation tests. The litera-
ture on systems biology is polluted with
reporting on overly optimistic results,
and high impact factors provide no
guarantee that studies were carried out
correctly (in fact, due to a lack of re-
viewers from the field of machine learn-
ing, mistakes likely stay overlooked).

Simon et al. (2003) provides a great
read on this topic. He found that many
of the early papers in gene expression
analysis reported high accuracy simply
due to overfitting.

In this first workflow, we gave the Test and Score widget a prepro-

cessor – we used feature selection in this example. The Test and Score

uses it correctly only on the training sets. This type of workflow is

preferred if we would like to test the e↵ect of preprocessing on several

di↵erent learning algorithms.

Alternatively, we can include a preprocessor in a learning method.

The workflow now calls the preprocessor on the training data set just

how to correctly perform test and score? 45

before this learner performs inference of the predictive model.

The Preprocess widget does not nec-
essary require a data set on its input.
An alternative use of this widget is to
output a method for data preprocess-
ing, which we can then pass to either
a learning method or to a widget for
cross validation.

Can you extend this workflow to such an extent that you can test

both a learner with preprocessing by feature subset selection and the

same learner without this preprocessing? How does the number of se-

lected features a↵ect the cross-validated accuracies? Does the success

of this particular combination of machine learning techniques depend

on the input data set? Does it work better for some machine learn-

ing algorithms? Try its performance on k-nearest neighbors learner

(warning: use small data sets, this classifier could be very slow). This is not the first time we have used
a widget that instead of a data passes
forward a computation method. All the
learners, like Random Forest, do so. A
learner could get data on its input and
pass a classifier to its output, or simple
pass an instance of itself, that is, pass a
learning algorithm to whichever widget
could use it. For instance, to the Test
and Score widget.

Somehow, in a shy way, we have also introduced a technique for

feature selection and pointed to its possible utility for classification

problems. Feature subset selection, or FSS in short, was and still

is, to some extent, an essential topic in machine learning. Modern

classification algorithms, though, perform it implicitly and can deal

with many features without the help of external procedures for their

advanced selection. Random forest is one such technique.

Classification Model Scoring

In multiple-choice exams, they grade you according to the number

of correct answers. The same goes for classifiers: the more correct

predictions they make, the better they are. Nothing could make more

sense. Right?

Maybe not. Consider Dr. Smith. He is a specialist for specific

diseases, and his diagnosis is correct in 98% of the cases. Would you

consider visiting him if you have some symptoms related to his spe-

cialty?

Not necessarily. Dr. Smith’s specialty is rare diseases. Two out of

a hundred of his patients have it, and, being lazy, he always dismisses

everybody as healthy. His predictions are worthless — although highly

accurate. Classification accuracy is not an absolute measure, which

we can judge out of context. At the very least, we have to compare it

with the frequency of the majority class, which is, in the case of rare

diseases, quite, hm, substantial.

For instance, on the GEO data set GDS 4182, the classification

tree achieves 79% cross-validation accuracy, which may be reasonably

good. Let us compare this with the Constant model, which implements

Dr. Smith’s strategy by always predicting the majority. It gets 83%.

Classification trees are not so good after all, are they?
What do other columns in Test and
Score widget represent? Keep reading!

On the other hand, the accuracy of classification trees on GDS 3713

is about 71%, which seems rather good compared to the 50% achieved

by predicting the majority.

The problem with classification accuracy goes deeper, though. Clas-

sifiers usually make predictions based on the probabilities they com-

pute. If a data instance belongs to class healthy with a probability of

80% and disseased with a probability of 20%, we classified it as healthy.

Such classification makes sense, right?

Classes versus probabilities as esti-
mated by logistic regression. Can you
replicate this image?

Maybe not, again. Say you fall down the stairs, and your leg hurts.

You open Orange, enter some data into your favorite model and com-

pute a 20% of having your leg broken. So you assume your leg is all

right, and you take an aspirin. Or perhaps not?

What if the chance of a broken leg was 10%? 5%? 0.1%? Say we

classification model scoring 47

decide that any leg with a 1% chance of being broken will be classified

as broken. What will this do to our classification threshold? It is going

to decrease badly — but we do not care. What do we do care about

then? What kind of “accuracy” is essential?

Not all mistakes are equal. We can summarize them in the Con-

fusion Matrix. Here is one for logistic regression on the heart disease

data. The numbers in the Confusion Matrix
have names. We can classify a data
instance as positive or negative; imag-
ine this as being positive or negative
when tested for some medical condi-
tion. This classification can be true
or false. So there are four options,
true positive (TP), false positive (FP),
true negative (TN), and false negative
(FN). Identify them in the table!

Logistic regression correctly classifies 145 healthy persons and 110

of the sick, the numbers on the diagonal. Classification accuracy is

then 255 out of 303, which is about 84%. Use the output from Confusion Matrix
as a subset for Scatter plot to explore
the data instances that were misclassi-
fied in a certain way.

Nineteen healthy people were unnecessarily scared. The opposite

error is worse: the heart problems of 29 persons went undetected. We

need to distinguish between these two kinds of mistakes.

We are interested in the probability that a person who has some

problem will be correctly diagnosed. There were 139 such cases, and

we correctly discovered 110. The proportion is 110/139 = 0.79. This

measure is called sensitivity or recall or true positive rate (TPR).

If you were interested only in sensitivity, though, here’s Dr. Smith’s

associate partner — wanting to be on the safe side, she considers ev-

erybody ill, so she has a perfect sensitivity of 1.0.

To counterbalance the sensitivity, we compute the opposite: what

is the proportion of correctly classified negative instances? 145 out of

164, that is, about 90%. This score is called specificity or true negative

rate. If you are interested in a complete list
of statistics, see the Wikipedia page on
Receiver operating characteristic, http
s://en.wikipedia.org/wiki/Receiv

er operating characteristic.

So, if the model classifies you as healthy, do you have a 90% chance

of actually being OK? No, it’s the other way around: 90% is the chance

of being classified as OK if you are OK. (Think about it, it’s not as

complicated as it sounds). If you’re interested in your chance of being

OK if the classifier tells you so, you look for the negative predictive

value. Then there’s also precision, the probability of being positive

if you are classified as such. And the fall-out and negative likelihood

ratio. There is a list of other indistinguishable fancy names for various

statistics, each useful for some purpose.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Choosing the Decision Threshold

The common property of scores from the previous lesson is that they

depend on the threshold for classifying an instance as positive. We can

balance between them by adjusting the threshold to find the required

sensitivity at an acceptable specificity. We can even assign costs (mon-

etary or not) to di↵erent kinds of mistakes and find the threshold with

the minimal expected cost.

A valuable tool to investigate the e↵ects of di↵erent thresholds is the

Receiver-Operating Characteristic curve. Don’t mind the (historical)

meaning of the name and just call it the ROC curve.

Here are the curves for logistic regression, SVM with linear kernels,

and naive Bayesian classifier on the same ROC plot.

The curves show how the sensitivity (y-axis) and specificity (x-axis,

but from right to left) change with di↵erent thresholds.Sounds complicated? If it helps: per-
haps you remember the term para-
metric curve from some of your math
classes. ROC is a parametric curve
where x and y (the sensitivity and 1 -
specificity) are a function of the same
parameter, the decision threshold.

There exists, for instance, a threshold for logistic regression (the

green curve) that gives us 0.65 sensitivity at the specificity of 0.95

(the curve shows 1 - specificity). Or 0.9 sensitivity with a specificity

of 0.8. Or a sensitivity of (almost) 1 with a specificity of somewhere

around 0.3.

The optimal point would be at the top left. The diagonal represents

the behavior of a random guessing classifier.

Which of the three classifiers is the best? It depends on the speci-

ficity and sensitivity we want; at some points, we prefer logistic regres-

sion and, at other points, the naive bayesian classifier. SVM doesn’t

cut it anywhere.

A popular score derived from the ROC curve is called an area under

curve, or AUC for short. It measures, well, the area under the curve.

ROC curve. If the curve goes straight up and then right, the area is

choosing the decision threshold 49

1; we can not reach optimal AUC in practice. If the classifier guesses

at random, the curve follows the diagonal, and AUC is 0.5. Anything

below that is equivalent to guessing or bad luck.

AUC has a kind of absolute scale. As a rule of thumb: 0.6 is bad, 0.7

is bearable, 0.8 is publishable, and anything above 0.95 is suspiciously

good.

AUC also has an excellent probabilistic interpretation. Say that we

are given two data instances, and we are told that one is positive and

the other is negative. We use the classifier to estimate the probabilities

of being positive for each instance and decide that the one with the

highest probability is positive. It turns out that the probability that

such a decision is correct equals the AUC of this classifier. Hence, AUC

measures how well the classifier discriminates between the positive and

negative instances.

From another perspective: if we use a classifier to rank data in-

stances, then AUC of 1 signifies a perfect ranking, an AUC of 0.5 a

random ranking, and an AUC of 0 an ideal reversed ranking.

	Workflows in Orange
	Basic data exploration
	Saving your work
	Loading data sets
	Hierarchical Clustering
	Animal Kingdom
	Silhouettes
	k-Means Clustering
	Classification
	Classification Trees
	Model Inspection
	Classification Accuracy
	How to Cheat
	Cross-Validation
	Logistic Regression
	Random Forests
	Support Vector Machines
	k-Nearest Neighbors
	Naive Bayes
	Cheating with Feature Subset Selection
	Cheating Even Works on Randomized Data
	How to Correctly Perform Test and Score?
	Classification Model Scoring
	Choosing the Decision Threshold

