
Classification

We have seen the iris data before. We wanted to predict varieties based We call the variable we wish to pre-
dict a target variable, or an outcome
or, in traditional machine learning ter-
minology, a class. Hence we talk about
classification, classifiers, classification
trees...

on measurements—but we actually did not make any predictions. We

observed some potentially interesting relations between the features

and the varieties, but have never constructed an actual model.

Let us create one now.

Something in this workflow is concep-
tually wrong. Can you guess what?

The data is fed into the Tree

widget, which infers a classifica-

tion model and gives it to the Pre-

dictions widget. Note that unlike

in our past workflows, in which

the communication between wid-

gets included only the data, we

here have a channel that carries

a predictive model.

The Predictions widget also re-

ceives the data from the File wid-

get. The widget uses the model to

make predictions about the data

and shows them in the table.

How correct are these predictions? Do we have a good model? How

can we tell?

But (and even before answering these very important questions),

what is a classification tree? And how does Orange create one? Is this

algorithm something we should really use?

So many questions to answer!

Classification Trees

In the previous lesson, we used a classification tree, one of the old-Classification trees were hugely popu-
lar in the early years of machine learn-
ing, when they were first independently
proposed by the engineer Ross Quin-
lan (C4.5) and a group of statisticians
(CART), including the father of ran-
dom forests Leo Brieman.

est, but still popular, machine learning methods. We like it since the

method is easy to explain and gives rise to random forests, one of the

most accurate machine learning techniques (more on this later). So,

what kind of model is a classification tree?

Let us load iris data set, build a tree (widget Tree) and visualize it

in a Tree Viewer.

We read the tree from top to

bottom. Looks like the column

petal length best separates the

iris variety setosa from the oth-

ers, and in the next step, petal

width then almost perfectly sepa-

rates the remaining two varieties.

Trees place the most useful fea-

ture at the root. What would be

the most useful feature? The fea-

ture that splits the data into two

purest possible subsets. It then

splits both subsets further, again

by their most useful features, and

keeps doing so until it reaches sub-

sets in which all data belongs to the same class (leaf nodes in strong

blue or red) or until it runs out of data instances to split or out of

classification trees 39

useful features (the two leaf nodes in white).

We still have not been very explicit about what we mean by ”the

most useful” feature. There are many ways to measure the quality of

features, based on how well they distinguish between classes. We will

illustrate the general idea with information gain. We can compute this

measure in Orange using the Rank widget, which estimates the quality The Rank widget can be used on its
own to show the best predicting fea-
tures. Say, to figure out which genes
are best predictors of the phenotype in
some gene expression data set.

of data features and ranks them according to how informative they are

about the class. We can either estimate the information gain from the

whole data set, or compute it on data corresponding to an internal

node of the classification tree in the Tree Viewer. In the following

example we use the Sailing data set.

The Datasets widget is set to load the
Sailing data set. To use the second
Rank, select a node in the Tree Viewer.

Besides the information gain, Rank displays several other measures

(including Gain Ratio and Gini), which are often quite in agreement

and were invented to better handle discrete features with many di↵er-

ent values.

For the whole Sailing data set, Com-
pany is the most class-informative fea-
ture according to all measures shown.

40 data science: a hands-on course at baylor college of medicine

Here is an interesting combination of a Tree Viewer and a Scatter

Plot. This time, use the Iris data set. In the Scatter Plot, we first

find the best visualization of this data set, that is, the one that best

separates the instances from di↵erent classes. Then we connect the

Tree Viewer to the Scatter Plot. Data instances (particular irises)

from the selected node in the Tree Viewer are shown in the Scatter

Plot.

Careful, the Data widget needs to be
connected to the Scatter Plot’s Data
input, and Tree Viewer to the Scatter
Plot’s Data Subset input.

Just for fun, we have included a few other widgets in this workflow.

In a way, a Tree Viewer behaves like Select Rows, except that the rules

used to filter the data are inferred from the data itself and optimized

to obtain purer data subsets.

In the Tree Viewer we selected the
rightmost node. All data instances
coming to the selected node are high-
lighted in Scatter Plot.

Wherever possible, visualizations in Orange are designed to support

selection and passing of the data that applies to it. Finding interesting

data subsets and analyzing their commonalities is a central part of

explorative data analysis, a data analysis approach favored by the

data visualization guru Edward Tufte.

Model Inspection

Here’s another interesting combination of widgets: Tree Viewer and

Scatter Plot. In Scatter Plot, find the best visualization of this data

set, that is, the one that best separates instances from di↵erent classes.

Then connect Tree Viewer to Scatter Plot. Selecting any node of the

tree will output the corresponding data subset, which will be shown in

the scatter plot.

Just for fun, we have included

a few other widgets in this work-

flow. The Tree Viewer selects

data instances by inferring rules

from the data itself and optimiz-

ing to obtain purer data subsets.

Classification Accuracy

Now that we know what classification trees are, the next question

is what is the quality of their predictions. For beginning, we need to

define what we mean by quality. In classification, the simplest measure

of quality is classification accuracy expressed as the proportion of dataaccuracy = #{correct}
#{all}

instances for which the classifier correctly guessed the value of the class.

Let’s see if we can estimate, or at least get a feeling for, classification

accuracy with the widgets we already know.

Let us try this schema with the iris data

set. The Predictions widget outputs a data

table augmented with a column that in-

cludes predictions. In the Data Table wid-

get, we can sort the data by any of these two

columns, and manually select data instances

where the values of these two features are

di↵erent (this would not work on big data).

Roughly, visually estimating the accuracy of

predictions is straightforward in the Distri-

bution widget, if we set the features in view

appropriately.

For precise statistics of correctly and incorrectly classified examples

open the Confusion Matrix widget.

The Confusion Matrix shows 3 incor-
rectly classified examples, which makes
the accuracy (150� 3)/150 = 98%.

How to Cheat

At this stage, the classification tree looks

This lesson has a strange title and it is
not obvious why it was chosen. Maybe
you, the reader, should tell us what this
lesson has to do with cheating.

very good. There’s only one data point

where it makes a mistake. Can we mess up

the data set so bad that the trees will ulti-

mately fail? Like, remove any existing cor-

relation between features and the class? We

can! There’s the Randomize widget with class shu✏ing. Check out

the chaos it creates in the Scatter Plot visualization where there were

nice clusters before randomization!

Left: scatter plot of the Iris data set
before randomization; right: scatter
plot after shu✏ing 100% of rows.Fine. There can be no classifier that can model this mess, right?

Let’s make sure.

And the result? Here is a screenshot of

the Confusion Matrix.

Most unusual. Despite shu✏ing all the

classes, which destroyed any connection be-

tween features and the class variable, about

80% of predictions were still correct.

44 data science: a hands-on course at baylor college of medicine

Can we further improve accuracy on the shu✏ed data? Let us try

to change some properties of the induced trees: in the Tree widget,

disable all early stopping criteria.

After we disable 2–4 check box in the
Tree widget, our classifier starts behav-
ing almost perfectly.

Wow, almost no mistakes now. How is this possible? On a class-

randomized data set?

In the build tree, there are 75 leaves. Remember, there are only 150
rows in the Iris data set.

To find the answer to this riddle, open the

Tree Viewer and check out the tree. How

many nodes does it have? Are there many

data instances in the leaf nodes?

Looks like the tree just memorized every

data instance from the data set. No wonder

the predictions were right. The tree makes

no sense, and it is complex because it simply

remembered everything.

Ha, if this is so, if a classifier remembers

everything from a data set but without dis-

covering any general patterns, it should per-

form miserably on any new data set. Let us

check this out. We will split our data set into

two sets, training and testing, train the clas-

sification tree on the training data set and

then estimate its accuracy on the test data

set.

Connect the Data Sampler widget
carefully. The Data Sampler splits the
data to a sample and out-of-sample (so
called remaining data). The sample
was given to the Tree widget, while the
remaining data was handed to the Pre-
dictions widget. Set the Data Sampler
so that the size of these two data sets
is about equal.

Let’s check how the Confusion Matrix looks after testing the clas-

sifier on the test data.

The first two classes are a complete fail. The predictions for ribo-

somal genes are a bit better, but still with lots of mistakes. On the

how to cheat 45

class-randomized training data our classifier fails miserably. Finally,

just as we would expect.

Confusion matrix if we estimate accu-
racy on a data set that was not used
in learning.

We have just learned that we need to train the classifiers on the

training set and then test it on a separate test set to really measure

performance of a classification technique. With this test, we can dis-

tinguish between those classifiers that just memorize the training data

and those that actually learn a general model.

Learning is not only memorizing. Rather, it is discovering patterns

that govern the data and apply to new data as well. To estimate the

accuracy of a classifier, we therefore need a separate test set. This

estimate should not depend on just one division of the input data set

to training and test set (here’s a place for cheating as well). Instead,

we need to repeat the process of estimation several times, each time

on a di↵erent train/test set and report on the average score.

Cross-Validation

Estimating the accuracy may depend on a particular split of

the data set. To increase robustness, we can repeat the mea-

surement several times, each time choosing a di↵erent subset

of the data for training. One such method is cross-validation.

It is available in Orange in the Test and Score widget.

Note that in each iteration, Test and Score will pick a part

of the data for training, learn the predictive model on this

data using some machine learning method, and then test the

accuracy of the resulting model on the remaining, test data

set. For this, the widget will need on its input a data set from

which it will sample the data for training and testing, and a

learning method which it will use on the training data set to construct

a predictive model. In Orange, the learning method is simply called a

learner. Hence, Test and Score needs a learner on its input.For geeks: a learner is an object that,
given the data, outputs a classifier.
Just what Test and Score needs.

This is another way to use the Tree widget. In the workflows from

the previous lessons we have used another of its outputs, called Model ;

its construction required data. This time, no data is needed for Tree,

because all that we need from it is a Learner.

Cross validation splits the data sets
into, say, 10 di↵erent non-overlapping
subsets we call folds. In each itera-
tion, one fold will be used for testing,
while the data from all other folds will
be used for training. In this way, each
data instance will be used for testing
exactly once.

In the Test and Score widget, the second column, CA, stands for

classification accuracy, and this is what we really care for for now.

Logistic Regression

Logistic regression is one of the best-known classifiers. The model

returns the probability of a class variable, based on input features.

First, it computes probabilities with a one-versus-all approach, mean-

ing that for a multiclass problem, it will take one target value and

treat all the rest as ”other”, e↵ectively transforming the problem to

binary classification.

Second, it tries to find an optimal plane that separates instances

with the target value from the rest. Then it uses logistic function to

transform the distance to the plane into probabilities. The further

away from the plane an instance will be, the higher the probability

it belongs to the class on that side of the plane. The closer it is to

the decision boundary (the plane), the more uncertain the prediction

becomes (i.e. it gets close to 0.5).

Can you guess what would the prob-
ability for belonging to the blue class
be for A, B, and C?

Logistic regression tries to find such a plane that all points from one

class are as far away from the boundary (in the correct direction) as

possible.

A great thing about Logistic Regression is that we can interpret

it with a Nomogram. Nomogram shows the importance of variables

for the model. The higher the variable is in the list, the greater its

importance. Also, the longer the line, the greater the importance. The

line corresponds to the coe�cient of the variable, which is then mapped

to the probability. You can drag the blue point on the line left or right,

decreasing or increasing the probability of the target class. This will

show you how di↵erent values a↵ect the outcome of the model.

48 data science: a hands-on course at baylor college of medicine

Another characteristic of logistic regression is that it observes all

variables at once and takes the correlation into account. If some vari-

ables are correlated, their importance will be spread among them.

A not so great thing about logistic regression is that it operates with

planes, meaning that the model won’t work when the data cannot be

separated in such a way. Can you think of such a data set?

Random Forests

Random forests, a modeling technique intro-

duced in 2001, is still one of the best per-

forming classification and regression tech-

niques. Instead of building a tree by always

choosing the one feature that seems to sep-

arate best at that time, it builds many trees

in slightly random ways. Therefore the in-

duced trees are di↵erent. For the final pre-

diction the trees vote for the best class.

The Pythagorean Forest widget shows
us how random the trees are. If we
select a tree, we can observe it in a
Tree Viewer.

There are two sources of randomness: (1) training data is sampled

with replacement, and (2) the best feature for a split is chosen among

a subset of randomly chosen features.

Which features are the most important? The creators of random

forests also defined a procedure for computing feature importances

from random forests. In Orange, you can use it with the Rank widget.

Feature importance according to two
univariate measures (gain ratio and
gini index) and random forests. Ran-
dom forests also consider combina-
tions of features when evaluating their
importance.

Support Vector Machines

Support vector machines (SVM) are another example of linear classi-

fiers, similar to logistic or linear regression. However, SVM can over-

come splitting the data by a plane by using the so-called kernel trick.

This means the hyperplane (decision boundary) can be transformed

to a higher-dimensional space, which can fit the data nicely. In such

a way, SVM becomes a non-linear classifier and can fit more complex

data sets.

Decision boundary of a linear regres-
sion classifier.

Decision boundary of a support vector
machine classifier with an RBF kernel.

The magic of SVM (and other methods that can use kernels, and

are thus called kernel methods) is that they will implicitly find a trans-

formation into a (usually infinite-dimensional) space, in which the dis-

tances between objects are such as prescribed by the kernel, and draw

a hyperplane in this space.

Abstract talking aside, SVM with di↵erent kernels can split the data

not by ordinary hyperplanes, but with more complex curves. The com-

plexity of the curve is decided by the kernel type and by the arguments

given to the algorithm, like the degree and coe�cients, and the penalty

for misclassifications.

k-Nearest Neighbors

The idea of k-nearest neighbors is simple - find k instances that are the

most similar to each data instance. We make the prediction or estimate

probabilities based on the classes of these k instances. For classifica-

tion, the final label is the majority label of k nearest instances. For

regression, the final value is the average value of k nearest instances.

kNN classifier looks at k nearest neigh-
bors, say 5, of instance X. 4 neighbors
belong to the red class and 1 to the
blue class. X will thus be classified as
red with 80% probability.

Unlike most other algorithms, kNN does not construct a model but

just stores the data. This kind of learning is called lazy learning.

The advantage of kNN algorithm is that it can successfully model

the data, where classes are not linearly separably. It can also be re-

trained quickly, because new data instances e↵ect model only locally.

However, the first training is can be slow for large data sets, as the

model has to estimate k distances for data instance.

Naive Bayes

Naive Bayes is also a classification method. To see how naive BayesNaive Bayes assumes class-wise inde-
pendent features. For a data set where
features would actually be indepen-
dent, which rarely happens in practice,
the naive Bayes would be the ideal
classifier.

works, we will use a data set on passengers’ survival in the Titanic

disaster of 1912. The Titanic data set describes 2201 passengers, with

their tickets (first, second, thirds class or crew), age and gender.

We inspect naive Bayes models with the Nomogram widget. There,

we see a scale ’Points’ and scales for each feature. Below we can see

probabilities. Note the ’Target class’ in upper left corner. If it is set to

’yes’, the widget will show the probability that a passenger survived.

The nomogram shows that gender was the most important feature

for survival. If we move the blue dot to ’female’, the survival probabil-

ity increases to 73%. Furthermore, if that woman also travelled in the

first class, she survived with probability of 90%. The bottom scales

show the conversion from feature contributions to probability.

According to the probability the-
ory individual contributions should be
multiplied. Nomograms get around
this by working in a log-space: a sum
in the log-space is equivalent to multi-
plication in the original space. There-
fore nomograms sum contributions (in
the log-space) of all feature values and
then convert them back to probability.

	Workflows in Orange
	Basic data exploration
	Saving your work
	Loading data sets
	Hierarchical Clustering
	Animal Kingdom
	Silhouettes
	k-Means Clustering
	Linear Regression
	Regularization
	Regularization and Accuracy on a Test Set
	Prediction of Biological Age
	Evaluating Regression
	Feature Scoring and Selection
	Classification
	Classification Trees
	Model Inspection
	Classification Accuracy
	How to Cheat
	Cross-Validation
	Logistic Regression
	Random Forests
	Support Vector Machines
	k-Nearest Neighbors
	Naive Bayes

