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Prediction of PM10 concentrations from Zagorje
(2012-2013)

Dependent variable -> PM10 concentrations from Zagorje
9 independent variables -> describing previous PM10 concentrations
variables describing the meteorological situation
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Assumptions of linear regression

Before applying linear regression we make some assumptions about our
data:

Linearity
Errors are normally distributed
Homoscedasticity: same error variance for different values of the
response variable
Independence of errors
Lack of perfect collinearity between independent variables
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Collinearity
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Variables should exhibit a linear
relationship between the
dependent and independent
variable.
The collinearity of m.t2m.12_t
and m.t2m.18_t could represent
a problem for the interpretation
of the regression coefficients, the
regression results are still valid.
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Fitting an ordinary linear regression

lm( formula = INFO_TARGET ~ ., data = data)

Residuals :

Min 1Q Median 3Q Max

-41.198 -5.340 -0.339 4.110 46.920

Coefficients :

Estimate Std. Error t value Pr(>|t|)

( Intercept ) 19.62233 2.39572 8.191 1.42e -15 ***

PM10_max_m 0.34723 0.02744 12.655 < 2e -16 ***

PM10_mean_y 0.28088 0.03462 8.114 2.52e -15 ***

wind_gust_m -0.86431 0.44779 -1.930 0.054029 .

m. t2m_12_t 0.55994 0.24835 2.255 0.024492 *

m. t2m_18_t -0.52370 0.26454 -1.980 0.048171 *

t2m_mean_m -0.72412 0.18937 -3.824 0.000144 ***

t_inv_y 0.27100 0.21778 1.244 0.213830

t_inv_m 0.49901 0.22978 2.172 0.030244 *

Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error : 9.781 on 639 degrees of freedom

Multiple R- squared : 0.7851 , Adjusted R- squared : 0.7824

F- statistic : 291.8 on 8 and 639 DF , p- value : < 2.2e -16

Is this an appropriate model?
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Model diagnostics

Residuals are the basis of most diagnostic methods. Different residuals:
Ordinary residuals ei = yi − ŷi .
In ordinary least squares (OLS) are uncorrelated with the fitted values.
If the regressor model is correct than residuals are random variables
with mean 0 and with variance Var(ei) = σ2(1− hi)
hi is the leverage.
Standardised residuals eSi = ei

σ̂
√
1−hi

, where σ̂ is the estimated of σ .
Studentised residuals eTi = ei

σ̂(−i)
√
1−hi

where σ̂(−i) is the estimate
of σ without the i-th observation.
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Leverage

Observations that are far from the center of the regressor space have
potentially great influence on the least-square regression coefficient
estimate.
Leverage Assesses how far away the independent variable values of an
observation are from those of the other observations (difference in
x-values).
The most common measure of leverage are hat values: The vector of
fitted values is given by ŷ = Xb = X (XT X )−1XT y = Hy where
H = hij = X (XT X )−1XT .
H projects y into the subspace spanned by the columns of the model
matrix X.
hij are diagonal values
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Diagnostic plots
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This plot shows if the residuals a
non-linear patter (the red approxi-
mated line should be straight). It
also shows the dispersion of residu-
als for different fitted values. The
values should be evenly distributed
around zero (homoscedasticity).
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Shows if the residuals are distributed
according to a distribution (in this
case the normal distribution).
On the x-axis the theoretical quantiles
of the normal distribution are plotted
and on the y-axis the quantiles of our
residuals.
If both sets of quantiles came from
the same distribution, we should see
the points forming a line that’s
roughly straight.
Points lying below the straight line are
closer to the median value than they
should be in the investigated
distribution, point lying above are
further
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Similar to the first plot, but with
standardised residuals (and square
root). Shows if the residuals are
spread equally along the ranges of
fitted values (homoscedasticity).
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Cook’s distance
Is an estimate of the influence of a data point on linear regression.

An observation that is both outlying and has high leverage exerts high
influence on the regression coefficients.
If the observation is removed the regression coefficient change significantly:

Di =
∑n

j=1(ŷj − ŷj(i))2

nMSE , (1)

where ŷj is the fitted response fitted (with all observations) and ŷj(i) is the
fitted response without observation i , n is the number of regression
coefficients (with the intercept) and MSE is the mean squared error.

It can also be expressed using the leverage:

Di = eSi
nMSE

hii
(1− hii)2

(2)

The original value proposed for the cut-off value is 1. Values of 4/n where
n is the sample size, or 8/(n − 2p) where p is the number of regressors.11 / 24
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Helps find influential cases; outlying
cases with high leverage
Points lying in the low and high right
corners, the points with high Cook
distance.
The dashed lines represent Cook
distance of 1 and 0.5
In this plot we can observe high
leverage points with little leverage and
large residuals with small leverage.
Nothing really problematic
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Fitting a generalized linear model (GLM)
glm( formula = INFO_TARGET ~ ., family = Gamma (link = "log "),

data = data)

Deviance Residuals :

Min 1Q Median 3Q Max

-0.96601 -0.20973 -0.04454 0.15974 1.08426

Coefficients :

Estimate Std. Error t value Pr(>|t|)

( Intercept ) 2.9487804 0.0747056 39.472 < 2e -16 ***

PM10_max_m 0.0101776 0.0008556 11.895 < 2e -16 ***

PM10_mean_y 0.0067450 0.0010795 6.248 7.58e -10 ***

wind_gust_m -0.0258245 0.0139635 -1.849 0.06486 .

m. t2m_12_t 0.0226227 0.0077442 2.921 0.00361 **

m. t2m_18_t -0.0259889 0.0082492 -3.150 0.00171 **

t2m_mean_m -0.0140274 0.0059051 -2.375 0.01782 *

t_inv_y 0.0016731 0.0067912 0.246 0.80548

t_inv_m 0.0152750 0.0071652 2.132 0.03340 *

---

Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

( Dispersion parameter for Gamma family taken to be 0.09301874)

Null deviance : 226.142 on 647 degrees of freedom

Residual deviance : 59.473 on 639 degrees of freedom

AIC: 4632.4

Number of Fisher Scoring iterations : 6 14 / 24



Interpretation of coefficients

Linear regression -> If we add 1 to a independent variable and keep
everything else constant the depended variable will change by the
value of the regression coefficients.
GLM -> The regression coefficients are now transformed by the link
function, you need an inverse transform to interpret them
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Model diagnosis

In ordinary linear regression the ordinary residual is the difference ŷ − y , it
represents the statistical error ε = E (y |η)− y .

There is no additive error in the definition of the GLM.

Response residuals (raw residuals): the difference between the
observed value and its estimated expected value yi − η̂i

Pearson residuals: ePi = yi−η̂i√
(Var(η̂i ))

; where Var(η̂i is the variance of
the estimated value (different for different distributions).
Deviance residuals: eDi = sign(yi − η̂i)

√
di

Deviance is a generalization of the idea of using the sum of squares of
residuals in ordinary least squares to cases where model fitting is achieved
by maximum likelihood.
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Deviance residuals

Residual deviance is 2 x (loglik(Saturated Model) - loglik(Proposed
Model))

1 The first term of the equation is the likelihood of the data given the
saturated model

2 The second term of the equation is the likelihood of the data given
the proposed model

A saturated model is a model with as many estimated parameters as
observations.
From the equation of residual deviance we can get the deviance residuals
where.
Deviance residual for observation i is estiamted as:√

2(log(likelihood of i given the saturated model)log(likelihood of i given the proposed model))
They are analogous to ordinary residuals in ordinary linear regression.
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Diagnostic plots
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Raw residuals are not very informa-
tive in GLM analysis (we do not ex-
pect a flat red line). Heteroscedas-
ticity is not a problem in GLM.
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Similar to ordinary residuals of ordi-
nary linear regression, the deviance
residuals of GLM should are nearly
normally distributed.
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Approximation of Cook’s distance

The approximate Cook’s distance for GLM is calculated as:

Di = ePSi
n

hii
(1− hii)

(3)

Where ePSi are Pearson residuals and hii is the leverage. As with ordinary
linear regression it helps estimate the high influence points.
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As with ordinary linear regression
this plot enables spotting high in-
fluence points.
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Logistic regression
We divide the concentrations in two classes, the concentrations below 40
µg/m3are regarded as high others as low.
glm( formula = class ~ ., family = binomial , data = data2 )

Deviance Residuals :

Min 1Q Median 3Q Max

-2.76215 -0.06772 0.17385 0.32650 3.10577

Coefficients :

Estimate Std. Error z value Pr(>|z|)

( Intercept ) 3.48657 0.90212 3.865 0.000111 ***

PM10_max_m -0.06029 0.01057 -5.702 1.18e -08 ***

PM10_mean_y -0.04289 0.01277 -3.359 0.000783 ***

wind_gust_m 0.09733 0.18236 0.534 0.593534

m. t2m_12_t -0.02608 0.08863 -0.294 0.768601

m. t2m_18_t 0.07968 0.09926 0.803 0.422126

t2m_mean_m 0.08174 0.07112 1.149 0.250438

t_inv_y -0.03925 0.07571 -0.518 0.604151

t_inv_m -0.07819 0.08121 -0.963 0.335618

---

Signif . codes : 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

( Dispersion parameter for binomial family taken to be 1)

Null deviance : 765.73 on 647 degrees of freedom

Residual deviance : 318.08 on 639 degrees of freedom

AIC: 336.08

Number of Fisher Scoring iterations : 6 23 / 24



Diagnostic plots for logistic regression

As in the example with the gamma model, the logistic regression can be to
some extent diagnosed with diagnostic plots. On the next slide are the
diagnostic plots plotted with the R boot library and the glm.diag.plot().

1 The first plot shows the residuals vs. the fitted values. Logistic
regression always exhibits a "double“ response (two separate curves).

2 The Q-Q plot indicate a problem with the fit of the logistic regression
model, the deviance residuals do not fit the normal distribution well.

3 The dashed lines in the two plots of Cook’s statistics use threshold
estimated as 8/(n − 2p) which is much lower than 0.5 or 1.
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Diagnostic plots
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