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Abstract. We propose a method for explaining regression models and
their predictions for individual instances. The method successfully re-
veals how individual features influence the model and can be used with
any type of regression model in a uniform way. We used different types
of models and data sets to demonstrate that the method is a useful tool
for explaining, comparing, and identifying errors in regression models.
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1 Introduction

Explaining prediction models and their predictions is an integral part of machine
learning. The purpose of such methods is making models more informative, eas-
ier to understand, and easier to use. These benefits are especially welcome when
using non-transparent prediction models, such as artificial neural networks and
SVM. Some of the most popular learning algorithms (naive Bayes, decision trees)
owe a part of their popularity to their ability to produce models which are inher-
ently easy to interpret. For others, model-specific explanation and visualization
methods have been developed [3,5,6]. There also exist general methods that can
be applied to any model. The latter are the focus of this paper.

Before discussing general explanation methods, we start with a simple ex-
ample. Figure 1 is an explanation for an instance from the artificial data set
testA. Instances from this data set describe the situation involving a student in
consultation with a professor about his final mark. The teacher can immediately
pass the student or may opt to test the student with additional questions in
which case it comes down to the student’s knowledge to determine whether the
student will pass. The model’s task is to predict the student’s chances of success.
The binary feature teacher describes the teachers action. The feature student de-
scribes the student’s knowledge and has 6 possible equally spread levels, where
0 means certain failure, 1 means 20% chance,..., and 5 means certain success. In
testA all combinations of pairs of values the two features are equally probable.
The explanation in Figure 1 is consistent with our intuition and helps us under-
stand the model’s prediction. Observe how the explanation is given in the form
of magnitudes and directions of features’ contributions. Assigning a contribution
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Fig.1. The decision tree makes a dire

prediction (0.12) for this poorly pre-

pared student (student = 0) who will Fig.2. A general explanation reveals
be tested (teacher = 1). The explanation that both features are approximately
suggests that both features have an ap- equally important (grey dots). Studying
proximately equal contribution. Both are increases the student’s chances. Not be-
negative, speaking against the student’s ing tested is beneficial while being tested
chances. has an opposite effect.

(score, rank, etc...) is a common approach and is used in most of the previously
mentioned model-specific methods and in all of the general methods that follow.

By using a general method machine learning and data mining practitioners
can avoid using a different model-specific explanation method for each different
model, which also simplifies comparison. Furthermore, in a practical setting it is
very desirable, especially from the end-user’s perspective, that the explanation
method need not be replaced if the underlying prediction models change. To
achieve such generality methods must avoid anything model-specific, essentially
treating every model as a black-box, limiting all interaction to changing the
inputs (feature values) and observing the outputs. Clearly, going through all
possible combinations of input values is infeasible, so each method is forced in
some sort of a tradeoff between its time complexity and the complexity of what
it can extract from a model.

Some existing methods, such as [7] and [4] use the “one feature at a time”
approach. A feature’s contribution for a particular instance is defined as the
average change in prediction when the feature’s value is permuted. While this
reduces the time complexity, it, in some cases, does not result in a change that
reveals the true importance of a feature. Observe how the value of the expression
1V 1 does not change if we change either of the 1’s to 0. Both must be changed at
the same time to achieve a change. A recently published paper introduces FIRM,
a method for computing the importance of features for a given model [9]. For
each feature the method observes the variance of the conditional expected output
of the model, across all possible values of that feature (conditional to the given
value of the feature). However, observe how for two uniformly distributed binary
variables E[by XOR ba|by = 1] = E[b; XOR bs|b; = 0] = 0.5. The conditional
expected outputs will be the same and variance will be 0. A clearly important
variable will be assigned 0 importance.



Visualizing and Explaining Black-Box Regression Models 3

A method that solves the problems mentioned in the previous paragraph
was recently developed for classification models [8]. The authors’ basic idea is to
observe changes across all subsets of features (for example, also observing how
the value of 1V 1 changes if we change both values at the same time). The ex-
ponential time complexity is resolved by an approximation algorithm. However,
unresolved issues remain. First, it is limited to classification models and can not
be used to explain a regression model. Second, it can only be used to explain a
particular instance (see Figure 1) - users would benefit from a global overview of
how features contribute (see Figure 2). And third, the proposed approximation
algorithm is based on a very strict assumption that all combinations of fea-
ture values are equiprobable. Successfully dealing with the first two issues and
loosening the assumption in the third are the main contributions of this paper.

The remainder of the paper is divided into 3 sections. In Section 2 we adapt
the explanation method for use with regression models and introduce improve-
ments. Section 3 describes a series of experiments on artificial data sets, followed
by an experiment on a real-world data set. With Section 4 we conclude the paper
and give some ideas for further work.

2 Explaining Regression Models’ Predictions

Let A€ Ay x Ay x ... X A, be our feature space, where each feature A; is a set
of values. Let p be the probability mass function defined on the sample space A.
Let f: A — R be our regression model. No other assumptions are made about
f.Let S ={Ay,...,A,}. The influence of a certain subset of features @ C S in
a given instance x € A is defined as

A(Q)(z) = E[f|values of features in @ for z] — E[f]. (1)

In other words, the contribution of a subset of feature values in a particular

instance is the change in expectation caused by observing those feature values.

Suppose we have A(Q)(z) for every @ C S. How do we combine these values

to form contributions of individual feature values? In [8] they propose using the

well known game-theoretic solution - the Shapley value - to define p;(x), the
contribution of the i—th feature for instance x:

|Q[!(IS] |_S\|!Q| DN AQU{i))(@) - AQ)(@). (2)

pi(z) =
QCS\{i}

Eq. 2 has desirable properties. The feature contributions are implicitly nor-
malized (they sum up to the initial difference Ag), which makes them easier
to interpret. If a feature does not have any impact on the prediction, will be
assigned a 0 contribution. And, features with a symmetrical impact will be as-
signed equal contributions. The work described so far in this section is credited
to [8] and only minor modifications were necessary to apply the method to a
regression setting (in our case f is a regression model’s output, instead of a
classification model’s probabilistic prediction for a given class value).
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2.1 Approximation Algorithm

Eq. 2 reflects any influence the feature might have on the prediction. However, in
practice it is often impossible to calculate the A-terms due to the time complex-
ity. Even if we could, we still face the exponential time complexity of computing
@i(z). In [8] this is resolved by assuming that p(z) = \T%I’ for all z € A. For any
given feature space this assumption limits the choice of p to a single possibility.
The distribution of values plays an important part in how people intuitively ex-
plain events. Recall the teacher/student scenario. The concept that students are
more likely to pass if they study or are not tested is universal (that is, such a
model would perform well on any university with a similar concept, regardless
of the distribution of feature values). Our intuitive explanation depends heavily
on the distribution of feature values. For example, a student who does not study
and is tested will fail. If this teacher tests students most of the time, we would
say that it is mostly the student’s own fault for not studying. On the other hand,
if the teacher almost never tests a student, most would say it was ”bad luck”
(that is, being tested is a much more important contributor than the amount
of study). This example emphasizes the importance of providing more flexibility
wrt the choice of p, while still retaining an efficient explanation algorithm.

To loosen the restriction, we assume that p is such that individual features
are mutually independent. Then transform Eq. 1 into

AQ)(2) =Y ply) (f(r(z,9.Q)) = f(¥)) ®3)

yeA

Note that 7(x,y, W) = (21, 22, ..., 2n), where z; = z; iff i € W and z; = y;,
otherwise. We use the alternative formulation of the Shapley value (equivalent
to Eq. 2)

o) = 3 (APFO)UL)E) - APFO)@)) (4)

T oen(n)

where 7(n) is the set of all permutations of n elements and Pri(Q) is the
set of all features which precede the i-th feature in permutation O € 7(n). By
combining Eq. 3 and Eq. 4, we get

p@) = S Sop) Gy PROYUED) - f(r(ay, PEOD). ()

" 0en(N)yeA

which facilitates the use of random sampling and an efficient approximation al-
gorithm (see Algorithm 1). Note that at random refers to drawing each feature’s
value at random, according to the distribution of that feature’s values (usually,
by sampling from a data set). Note that due to with replacement features with
finite and infinite domains are treated identically. Therefore, it can be applied
to both nominal and numeric features.

Observe the same model’s prediction for the same instance, but from data
set testB where the teacher tests the students a vast majority of time (Figure
3) and compare to Figure 1. The explanation now depends on the context and
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Algorithm 1 Approximating @;(x), the importance of the i-th feature’s value
for instance x and model f. Take m samples.
pi(z) 0
for k=1 tom do
select (at random) permutation O € w(n) and instance y € A

take their values from z take their values from y

Tl — ’ feat. preceding 7 in O " feat. succeeding i in O ‘

take their values from z take their values from y

To ’ feat. preceding 7 in O ‘ ’ feat. succeeding i in O ‘

pi(r) — pi(@) + f(z1) = f(22)

end for
pi(z) —

wi(x)

Algorithm 2 Approximating 1); ;, the global importance of the i-th feature’s
value j for model f. Take m samples.
Yij =0
for k=1 tom do
select (at random) instance y € A
X1 <— set i-th feature to j, take other values from y
i — i+ fz1) — f(y)

end for

Vi,
i —

the proposed explanation method provides us with explanations which are in
accordance with our own intuitive explanation.

Figures 1 and 3 show how individual feature values influence the model’s pre-
diction for a given instance. For a global overview of how a feature contributes,
we could observe the contributions across several instances. Instead, we provide
the same information within a single visualization. We define the global contri-
bution of the i-th feature’s j-th value as the expected value of that feature’s
contribution (see Eq. 5) for an instance where its value is j:

Gig= . p@)pi(@) =Y px)pi(w) =

zeA,x[i]=7 z€EA
(©)
= 3 Y@ (F@) - F@) = 3 pl@) (S~ f))
Oen(N)zeA z€ A

where 2’ is z with i-th feature’s value set to j). Eq. 6 can be approximated
using Algorithm 2.

Figure 2 is a visualization of the global importance of features for our illustra-

tive data set testA. Each grey/black point pair is obtained by running Algorithm
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Data: testB Model: M5P Instance Explanation
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Prediction: R = 0.12

Actual value for this instance: R =0
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Fig. 3. If it is likely that the teacher will
test the student then studying hard (or
lack of) becomes much more important.
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Fig.5. M5P successfully models dDis;j
and correctly predicts R = 1. The vi-
sualization shows that a single feature is
responsible for the prediction, while the
other two have the opposite effect.
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Fig. 4. KNN1 does not perform well, but
the features have a strong influence on its
predictions. We can conclude it overfits.
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Fig. 6. The neural network successfully
models dXorBin and correctly predicts
this instance. The explanation reveals
that the first three features are impor-
tant and all three contribute towards 1.

2. The mean of 9, ; samples (black points) reveals the magnitude and direction
of the value’s average influence. Standard deviation of ; ; samples (grey points)
is also included for each value to reveal its global importance.

For an instance explanation, we repeat Algorithm 1 for each feature. To
ensure with a certain probability that the approximated contribution will be
within a certain distance from the actual contribution we require a constant
number of samples. Therefore, for a given error the number of samples m needed
to generate the explanation for a single feature does not increase with the number
of features. The same applies to global visualizations, although the constant is
larger because we repeat the process for each feature value we plot. The total
running time for one explanation is: a constant x the number of features n x
the model’s prediction time complexity 7 (f(x)). The methods time complexity
is O(n-T(f(z)). For most regression algorithms 7 (f(x)) is O(n), which implies
quadratic time complexity. Our purpose is to show that the method is a well-
founded and useful tool, which can be used to generate explanations in real-time
(order of seconds) for data sets with up to a few dozen features (already shown
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Fig.7. SVM provides the best fit for
dPoly. Subsequently, the contributions
closely match the actual concepts.

Fig. 8. The visualization shows us that
MP learned some but not all of the con-
cepts behind the dPoly data set.

in [8]). A more rigorous analysis of the limits of the method wrt the number of
features it can handle for a given type of model is delegated to further work.

3 Experimental Verification

We have shown that the method is theoretically well founded and has several
desirable properties. But how well does it translate into practice. The time com-
plexity was discussed at the end of Section 2.1. Due length limits, we omit an
in-depth analysis of running times in favor of showing more examples.

We tested the method using six different regression algorithms: linear re-
gression (LR), a Support Vector Machine for regression (SVM), a multi-layer
perceptron with a single hidden layer (MP), k-nearest neighbors (k =1 and k =
11), a regression tree (M5P), and pace regression (PR). The method was imple-
mented in Java using Weka’s learning algorithm classes [1]. Default parameters
were used, with the exception of SVM, where a 2nd degree polynomial kernel
was used. A variety of models (in terms of performance and type) is desirable
as we can verify if the explanations reveal why they performed well or poorly.

Artificial data allow us to test if explanations generated for good models are
close to those generated for the optimal model (and vice versa). All feature values
lie between 0.00 and 100.00, R is the target variable, each data set has 5 features
and those that are not explicitly mentioned have no influence on R. Note that
1000 training and 1000 test samples were generated for each data set. Data sets:
dLinear (R = A; + 245 + 343), dRedund (R = 2A; — 24,; A3 always has
the same value as Ay to create a redundant feature), dLocLin (features As and
Ay, are binary and divide the problem space into 4 locally linear subproblems:
R = 5A; + As,ifA3 = ONAy = 0;R = Ay —4A,,ifA3 = 0N Ay = 1;R =
2A1 +8A271fA3 =1 /\A4 = O, R = —2A1 — 3A2, 1fA3 =1 /\A4 = 1), drI‘I‘ig (R =
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Table 1. RRMSE and distances from the explanation for an optimal model (in paren-
theses). The correlation coefficients between the two are included for each data set.

dLinear dLocLin dRedund dTrig dPoly dDisj dXor dXorBin dRand

LR 0.00  0.49 0.00 0.83 0.98 0.85 1.00 1.00  1.00
(3.09) (112.72)  (2.33) (0.78) (4.06) (0.17) (0.35)  (0.29) (1.82)
MP 0.01  0.05 0.02 0.33 0.88 0.72 0.57 0.00  0.99
(3.10) (13.75)  (3.01) (0.20) (3.25) (0.13) (0.17)  (0.05) (1.72)
SVM 0.01  0.13 0.0l 050 0.13 1.05 0.81 1.60  1.00
(3.08) (24.24)  (2.78) (0.33) (0.67) (0.33) (0.26)  (0.81) (3.19)
M5P 024  0.08 0.12 0.18 0.30 0.34 0.30 0.00  1.00
(24.12) (20.38)  (7.20) (0.13) (1.03) (0.03) (0.06)  (0.04) (3.40)
KNN1 0.34  0.11 0.16 059 0.66 0.75 0.75 0.00  1.00
(19.80) (25.53) (17.21) (0.35) (2.52) (0.10) (0.23)  (0.14) (14.87)
KNN10 024  0.11 0.13 0.52 0.60 0.61 0.60 0.26  1.01
(22.12) (28.73) (11.23) (0.43) (2.24) (0.12) (0.21)  (0.16) (5.79)
PR 0.00  0.50 0.00 0.79 0.97 0.74 1.00 1.00  1.00

(2.97) (114.52)  (3.25) (0.73) (4.05) (0.16) (0.35)  (0.29) (1.89)
coeff  0.942 0.998 0.927 0.958 0.991 0.911 0.992 0.913 NA

sin( L) + cos(Zd2)), dPoly (R = 2(£4:20)? — 3(42250)2 — 4:250)  dDis;j
(R=1if (A1 > 50) V (A2 > 40) V (A3 > 60); otherwise R = 0), dXor (an XOR
problem, R = (A; > 50) XOR (A3 > 50) XOR (A > 50))), dXorBin (similar
to dXor, all five features are binary.,R = A; XOR Ay XOR A3), dRand (R is

chosen at random).

First, we investigated if the generated contributions reflect what the model
learns. We evaluated the models with the relative root mean squared error
(RRMSE). For a distance measure’ we used the Euclidean distance between
the vector (o1, ..., ¢n) and the vector generated when using optimal predictions
instead of f. Table 1 shows the results for the described experiment. Some mod-
els perform better and some data sets are more difficult. Regardless, explanation
quality and model performance are highly correlated.

Correlation is not applicable to dRand. All models should have a RRMSE of 1
(any deviations are due to noise). However, some models overfit, which results in
explanations away from optimal. For example, KNNT1 is likely to overfit. Figure
4 reveals that feature A; has a substantial influence on the KNN1 model, despite
being useless for predicting R.

Results confirm that the explanations reflect, at least in an abstract sense,
what the models have learnt. We continue by observing some examples and
verifying whether the explanations are useful from a user’s perspective. We start
with instances from dDisj and dXorBin. Figures 5 and 6 are explanations for
M5P on dDisj and MP on dXorBin, respectively. In the introduction we pointed
out that these two concepts are representative of what existing general methods
are unable to handle correctly. Visualizations show that the proposed method
reveals the important features and their contributions.

! That is, to describe how much the explanations generated for a given model differ
from those generated for an optimal model.
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Fig. 9. LR is most influenced by cement, Fig.10. Similar to LR, cement, water,
water, and age. Concrete strength in- and age are the most important for the
creases with age and amount of cement neural network model. However, MP fits

and decreases with the amount of water. the non-linear relationships better.

Now we proceed to global visualizations?. The best model for dPoly was
SVM. The explanation (Figure 7) confirms that it fits the data well. The worst
were the linear models, which can not fit the polynomial. The MP model is
somewhere in between and Figure 8 reveals why. The model learned only a part
of the concept, missing the relevance of feature As.

We conclude the section with a more realistic example of what data mining
practitioners encounter in practice. The concrete data set has 9 numeric features
- concrete mixture components (in kg/m?®) and age (in days), and one target
feature - compressive strength of the mixture (in MPa). The data were obtained
from the UCIT repository, where it was made available by prof. I-Cheng Yeh [2].

The compression strength is a highly non-linear problem [2]. Using LR and
MP we achieved mean squared errors of 109 and 55, respectively, while predicting
with the mean value results in a mean squared error of 279 (we used 10-fold
cross-validation). The minimum, maximum, mean, and standard deviation of the
compressive strength class variable are 2.3, 82.6, 35.8, and 16.706, respectively.

Figures 9 and 10 are visualizations for LR and MP. These are used to re-
veal the overall importance of individual features and their contribution to the
model’s predictions. When interested in a specific prediction, we observe the
corresponding instance explanation. For example, Figure 11 is an instance ex-
planation for MP’s prediction for a particular concrete mixture. MP’s prediction
for is close to the actual concrete compressive strength, while LR overestimates
the compressive strength for this instance and predicts 60 MPa. The explanation
reveals which features contribute towards/against compressive strength.

2 We left some irrelevant features out of the visualizations, to conserve space.
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Data: concrete Model: MP Instance Explanation

Prediction: p = 45.43
Actual value for this instance: class = 44.3

Feature Contribution Value

Cement

Fig. 11. For this particular prediction age contributes positively. The amount of water
and cement have a negative contribution. Construction experts agree with the expla-
nation and elaborate that the mixture suffers from a high water-to-cement ratio. Least
important features were removed.

4 Conclusion

The proposed explanation method is simple to implement and can be applied to
any regression model. It can explain both the model and its predictions. Results
across different regression models and data sets confirmed that the method’s
explanations reflect what the models learn, even in cases where existing general
explanation methods would fail. The examples presented throughout the paper
illustrate that the method is a useful tool for visualizing models, comparing
them, and identifying potential errors. With emphasis on the theoretical prop-
erties and the method’s usefulness, less attention was given to measuring and
optimizing running times. We delegate this to further work, together with an
in-depth analysis of running times across different types of models.
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