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Lesson 17: Another Overfitting 
Demo
It is worth repeating: you should never select features or perform 
any other data preprocessing (binning, noise filtering, 
normalization…) on the data you will later use, in part, for testing. 
These operations are part of the analysis and can be carried out 
only on the training data set.

Here is a simple illustration why this is wrong. Consider a random 
data set with 100 instances, described by 10,000 features and 
assigned randomly to any of the two classes.

�

Although the data is random, there are enough features that some 
are randomly correlated with the class. We have previously used 
the Rank widget to find them. To make our illustration more 
illustrative, we will now use Rank projections to find a good a pair 
of features. Projection ranking discovers that, among few other 
feature pairs, features 52 and 8317 almost perfectly split the data 
into a red and blue region.

We use the Select column widget to remove all features but these 
two; the entire data set is now reduced to the above plot. We run, 
say, Logistic regression through 5-fold cross validation and get 
excellent results.
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It is amazing, though, how 
quickly we spot random 
patterns. Adding a bit of color 
provides a “convincing 
argument” for the existence of 
“blue” and “red” regions in this 
plot. 

Download the file with a random 
data set from  
http://bit.ly/1EEB4FX 

http://bit.ly/1EEB4FX
http://bit.ly/1EEB4FX
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Consider what we’ve done. We used projection ranking to find a 
pattern in the random data. We reduced the whole data set to this 
pattern and then used 5-fold cross validation to verify if logistic 
regression is able to separate the classes. Of course it is! This is 
exactly why we have selected the two features in the first place.

Now we will try to pull this off under the limitations of proper 
procedure: we first store away some data (say one fifth, 10 
instances) for testing. What is left is the training data, on which we 
use projection rank to again find the best two features. This time, 
we get features 52 and 4870; as before, we select them in the Select 
Columns widget. We induce a classifier from this data. But - here’s 
a difference: we don’t test using cross validation on preprocessed 
data, but take the left out data instead. We use the Remaining data 
from the Data Sampler in the Test Data in Test & Score widget. 
We also have to choose the option Test on test data in the Test & 
Score widget.

Logistic regression no longer works as well. Since the data is 
random, the ten points that were left out and were not shown to 
projection ranking can (and do) lie just anywhere in the plot.

The bulk of the work for pattern finding in these examples is done 
by projection ranking, not by logistic regression.

In the second example, we have not used cross validation since it 
would require us to perform projection ranking and manually 
change the Select Columns’ settings for each fold — our manual 
work would thus become part of the loop. In the example from the 
previous lesson, feature selection was automated, so we could 
include it within cross validation.

As a side note, having a separate test set — say a golden standard 
— is quite common. A typical schema that uses it would look like 
this.
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Lesson 18: Model Scoring
In multiple choice exams, you are graded according to the number 
of correct answers. The same goes for classifiers: the more correct 
predictions they make, the better they are. Nothing could make 
more sense. Right?

Maybe not. Dr. Smith is a specialist of a type and his diagnosis is 
correct in 98% of the cases. Would you consider visiting him if you 
have some symptoms related to his speciality?

Not necessarily. His specialty, in fact, are rare diseases (2 out of 100 
of his patients have it) and, being lazy, he always dismisses 
everybody as healthy. His predictions are worthless — although 
extremely accurate. Classification accuracy is not an absolute 
measure, which can be judged out of context. At the very least, it 
has to be compared with the frequency of the majority class, which 
is, in case of rare diseases, quite … major.

For instance, on GEO data set GDS 4182, the classification tree 
achieves 78% accuracy on cross validation, which may be 
reasonably good. Let us compare this with the Majority learner, 
which implements Dr. Smith’s strategy by always predicting the 
majority. It gets 83%. Classification trees are not so good after all, 
are they?

On the other hand, their accuracy on GDS 3713 is 57%, which 
seems rather good in comparison with the 50% achieved by 
predicting the majority.

The problem with classification accuracy goes deeper, 
though.

Classifiers usually make predictions based on probabilities 
they compute. If a data instance belongs to class A with a 
probability of 80% and to B with a probability of 20%, it is 
classified as A. This makes sense, right?

Maybe not, again. Say you fall down the stairs and your leg hurts. 
You open Orange, enter some data into your favorite model and 
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What do other columns 
represent? Keep reading!

Classes versus probabilities 
estimated by logistic regression. 
Can you replicate this image?
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compute a 20% of having your leg broken. So you assume your leg 
is not broken and you take an aspirin. Or perhaps not?

What if the chance of a broken leg was just 10%? 5%? 0.1%?

Say we decide that any leg with a 1% chance of being broken will 
be classified as broken. What will this do to our classification 
threshold? It is going to decrease badly — but we apparently do 
not care. What do we do care about then? What kind of “accuracy” 
is important?

Not all mistakes are equal. We can summarize them in the 
Confusion Matrix. Here is one for logistic regression on the heart 
disease data.

Logistic regression correctly classifies 145 healthy 
persons and 110 of the sick, the numbers on the 
diagonal. Classification accuracy is then 255 out of 
303, which is 84.2%.

19 healthy people were unnecessarily scared. The 
opposite error is worse: the heart problems of 29 
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These numbers in the Confusion 
Matrix have names. An instance 
can be classified as positive or 
negative; imagine this as being 
positive or negative when being 
tested for some medical 
condition. This classification can 
be true or false. So there are four 
options, true positive (TP), false 
positive (FP), true negative (TN) 
and false negative (FN). 

Identify them in the table!

Use the output from Confusion 
Matrix as a subset for Scatter 
plot to explore the data 
instances that were misclassified 
in a certain way.
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persons went undetected. We need to distinguish between these 
two kinds of mistakes.

We are interested in the probability that a person who has some 
problem will be correctly diagnosed. There were 139 such cases, 
and 110 were discovered. The proportion is 110 / 139 = 0.79. This 
measure is called sensitivity or recall or true positive rate (TPR).

If you were interested only in sensitivity, though, here’s Dr. Smith’s 
associate partner — wanting to be on the safe side, she considers 
everybody ill, so she has a perfect sensitivity of 1.0.

To counterbalance the sensitivity, we compute the opposite: what 
is the proportion of correctly classified negative instances? 145 out 
of 164, that is, 88%. This is called specificity or true negative rate.

So, if you’re classified as OK, you have a 88% chance of actually 
being OK? No, it’s the other way around: 88% is the chance of 
being classified as OK, if you are OK. (Think about it, it’s not as 
complicated as it sounds). If you’re interested in your chance of 
being OK if the classifier tells you so, you look for the negative 
predictive value. Then there’s also precision, the probability of being 
positive if you’re classified as such. And the fall-out and negative 
likelihood ratio and … a whole list of other indistinguishable fancy 
names, each useful for some purpose.
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If you are interested in a complete 
list, see the Wikipedia page on 
Receiver operating characteristic,  
https://en.wikipedia.org/wiki/
Receiver_operating_characteristic

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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Lesson 19: Choosing the 
Decision Threshold
The common property of scores from the previous lesson is that 
they depend on the threshold we choose for classifying an instance 
as positive. By adjusting it, we can balance between them and find, 
say, the threshold that gives us the required sensitivity at an 
acceptable specificity. We can even assign costs (monetary or not) 
to different kinds of mistakes and find the threshold with the 
minimal expected cost.

A useful tool for this is the Receiver-Operating Characteristic 
curve. Don’t mind the meaning of the name, just call it the ROC 
curve.

Here are the curves for logistic regression, SVM with linear 
kernels and naive Bayesian classifier (another method that looks 
for the optimal hyperplane that separates the classes) on the same 
ROC plot.
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The curves show how the sensitivity (y-axis) and specificity (x-axis, 
but from right to left) change with different thresholds.

There exists, for instance, a threshold for logistic regression (the 
green curve) that gives us 0.65 sensitivity at 0.9 specificity (the 
curve shows 1 - specificity). Or 0.9 sensitivity with a specificity of 
0.8. Or a sensitivity of (almost) 1 with a specificity of somewhere 
around 0.3.

The optimal point would be at top left. The diagonal represents 
the behavior of a random guessing classifier.

Which of the three classifiers is the best now? It depends on the 
specificity and sensitivity we want; at some points we prefer 
logistic regression and at some points the naive bayesian classifier. 
SVM doesn’t cut it, anywhere.

There is a popular score derived from the ROC curve, called Area 
under curve, AUC. It measures, well, the area under the curve. If 
the curve goes straight up and then right, the area is 1; this is 
optimal AUC and not reached in practice. If the classifier guesses 
at random, the curve follows the diagonal and AUC is 0.5. 
Anything below that is equivalent to guessing + bad luck.

AUC has a kind of absolute scale. As a rule of a thumb: 0.6 is bad, 
0.7 is bearable, 0.8 is publishable and 0.9 is suspicious.

AUC also has a nice probabilistic interpretation. Say that we are 
given two data instances and we are told that one is positive and 
the other is negative. We use the classifier to estimate the 
probabilities of being positive for each instance, and decide that 
the one with the highest probability is positive. It turns out that 
the probability that such a decision is correct equals the AUC of 
this classifier. Hence, AUC measures how well the classifier 
discriminates between the positive and negative instances.

From another perspective: if we use a classifier to rank data 
instances, then AUC of 1 signifies a perfect ranking, an AUC of 0.5 
a random ranking and an AUC of 0 a perfect reversed ranking.
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Sounds complicated? If it helps: 
perhaps you remember the term 
parametric curve from some of 
your math classes. ROC is a 
parametric curve where x and y 
(the sensitivity and 1 - specificity) 
are a function of the same 
parameter, the decision 
threshold.

ROC curves and AUC are 
fascinating tools. To learn more, 
read T. Fawcett: ROC Graphs: 
Notes and Practical 
Considerations for Researchers

https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
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Lesson 20: Linear Regression
For a start, let us construct a very simple data set. It will contain a 
just one continuous input feature (let’s call it x) and a continuous 
class (let’s call it y). We will use Paint Data, and then reassign one 
of the features to be a class by using Select Column and moving 
the feature y from the list of “Features” to a field with a target 
variable. It is always good to check the results, so we are including 
Data Table and Scatter Plot in the workflow at this stage. We will 
be modest this time and only paint 10 points and will use Put 
instead of the Brush tool.

We would like to build a model that predicts the value of class y 
from the feature x. Say that we would like our model to be linear, 
to mathematically express it as h(x)=𝜃0+𝜃1x. Oh, this is the 
equation of a line. So we would like to draw a line through our data 
points. The 𝜃0 is then an intercept, and 𝜃1 is a slope. But there are 
many different lines we could draw. Which one is the best one? 
Which one is the one that fits our data the most?
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In the Paint Data widget, remove 
the Class-2 label from the list. If 
you have accidentally left it while 
painting, don’t despair. The class 
variable will appear in the Select 
Columns widget, but you can 
“remove” it by dragging it into 
the Available Variables list. 



Introduction to Data Mining September 2016

The question above requires us to define what a good fit is. Say, 
this could be the error the fitted model (the line) makes when it 
predicts the value of y for a given data point (value of x). The 
prediction is h(x), so the error is h(x) - y. We should treat the 
negative and positive errors equally, plus, let us agree, we would 
prefer punishing larger errors more severely than smaller ones. 
Therefore, it is perfectly ok if we square the errors for each data 
point and then sum them up. We got our objective function! Turns 
out that there is only one line that minimizes this function. The 
procedure that finds it is called linear regression. For cases where 
we have only one input feature, Orange has a special widget in the 
educational add-on called Polynomial Regression.

Looks ok. Except that these data points do not appear exactly on 
the line. We could say that the linear model is perhaps too simple 
for our data sets. Here is a trick: besides column x, the widget 
Univariate Regression can add columns x2, x3… xn to our data set. 
The number n is a degree of polynomial expansion the widget 
performs.  Try setting this number to higher values, say to 2, and 
then 3, and then, say, to 9. With the degree of 3, we are then fitting 
the data to a linear function h(x) = 𝜃0 + 𝜃1x + 𝜃1x2 + 𝜃1x3. 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Do not worry about the strange 
name of the widget Polynomial 
Regression, we will get there in a 
moment.
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The trick we have just performed (adding the higher order features 
to the data table and then performing linear regression) is called 
Polynomial Regression. Hence the name of the widget. We get 
something reasonable with polynomials of degree 2 or 3, but then 
the results get really wild. With higher degree polynomials, we 
totally overfit our data.

Overfitting is related to the complexity of the model. In 
polynomial regression, the models are defined through parameters 
𝜃. The more parameters, the more complex is the model. 

Obviously, the simplest model has just one parameter (an 
intercept), ordinary linear regression has two (an intercept and a 
slope), and polynomial regression models have as many parameters 
as is the degree of the polynomial. It is easier to overfit with a 
more complex model, as this can adjust to the data better. But is 
the overfitted model really discovering the true data patterns? 
Which of the two models depicted in the figures above would you 
trust more?
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It is quite surprising to see that 
linear regression model can 
result in fitting non-linear 
(univariate) functions. That is,  
functions with curves, such as 
those on the figures. How is this 
possible? Notice though that the 
model is actually a hyperplane (a 
flat surface) in the space of many 
features (columns) that are 
powers of x. So for the degree 2, 
h(x)=𝜃0+𝜃1x+𝜃1x2 is a (flat) 

hyperplane. The visualization 
gets curvy only once we plot h(x) 
as a function of x. 
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Lesson 21: Regularization
There has to be some cure for the overfitting. Something that 
helps us control it. To find it, let’s check what the values of the 
parameters 𝜃 under different degrees of polynomials actually are

With smaller degree polynomials values of 𝜃 stay small, but then as 
the degree goes up, the numbers get really large.

More complex models can fit the training data better. The fitted 
curve can wiggle sharply. The derivatives of such functions are 
high, and so need to be the coefficients 𝜃. If only we could force 

the linear regression to infer models with a small value of 
coefficients. Oh, but we can. Remember, we have started with the 
optimization function the linear regression minimizes, the sum of 
squared errors. We could simply add to this a sum of all 𝜃 squared. 

And ask the linear regression to minimize both terms. Perhaps we 
should weigh the part with 𝜃 squared, say, we some coefficient λ, 

just to control the level of regularization.
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Which inference of linear model 
would overfit more, the one with 
high λ or the one with low λ? 
What should the value of λ be to 
cancel regularization? What if 
the value of λ is really high, say 
1000? 
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Here we go: we just reinvented regularization, a procedure that 
helps machine learning models not to overfit the training data. 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To observe the effects of the regularization, we can give 
Polynomial Regression our own learner, which supports these kind 
of settings.

The Linear Regression widget provides two types of regularization. 
Ridge regression is the one we have talked about and minimizes 
the sum of squared coefficients 𝜃. Lasso regression minimizes the 

sum of absolute value of coefficients. Although the difference may 
seem negligible, the consequences are that lasso regression may 
result in a large proportion of coefficients 𝜃 being zero, in this way 
performing feature subset selection.

Now for the test. Increase the degree of polynomial to the max. 
Use Ridge Regression. Does the inferred model overfit the data? 
How does degree of overfitting depend on regularization strength?
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Internally, if no learner is present 
on its input, the Polynomial 
Regression widget would use 
just its ordinary, non-regularized 
linear regression.



Introduction to Data Mining September 2016

Lesson 22: Prediction of Tissue 
Age from Level of Methylation
Enough painting. Now for the real data. We will use a data set that 
includes human tissues from subjects at different age. The tissues 
were profiled by measurements of DNA methylation, a mechanism 
for cells to regulate the gene expression. Methylation of DNA is 
scarce when we are young, and gets more abundant when we age. 
We have prepared a data set where the degree of methylation was 
expressed per each gene. Let us test if we can predict age from the 
methylation profile, and if we can do this better than just 
predicting the average age of subjects in the training set.

This schema looks familiar and is similar to those for classification 
problems. The Test & Score widget reports on statistics we have 
not seen before. MAE, for one, is the mean average error. Just like 
for classification, we have used cross-validation, so MAE was 
computed only on the test data instances and averaged across 10 
runs of cross validation. The results indicate that our modeling 
technique misses the age by about 5 years, which is a much better 
result than predicting by a mean age in the training set.
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Download the methylation data 
set from http://bit.ly/2c4X3fK. 
Predictions of age from 
methylation profile were 
investigated by Horvath (2013) 
Genome Biology 14:R115.

http://bit.ly/2c4X3fK
http://bit.ly/2c4X3fK
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Lesson 22: Evaluating Regression
The last lesson quickly introduced scoring for regression, and 
important measures such as RMSE and MAE. In classification, a 
nice addition to find misclassified data instances was the confusion 
matrix. But the confusion matrix could only be applied to discrete 
classes. Before Orange gets some similar for regression, one way to 
find misclassified data instances is through scatter plot!

We can play around with this workflow by painting the data such 
that the regression would perform well on blue data point and fail 
on the red outliers. In the scatter plot we can check if the 
difference between the predicted and true class was indeed what 
we have expected.

�  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This workflow visualizes the 
predictions that were performed 
on the training data. How would 
you change the widget to use a 
separate test set? Hint: The 
Sample widget can help.
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A similar workflow would work for any data set. Take, for instance, 
the housing data set (from Orange distribution). Say, just like 
above, we would like to plot the relation between true and 
predicted continuous class, but would like to add information on 
the absolute error the predictor makes. Where is the error coming 
from? We need a new column. The Feature Constructor widget 
(albeit being a bit geekish) comes to the rescue.

In the Scatter Plot widget, we can now select the data 
where the predictor erred substantially and explore 
the results further. 
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We could, in principle, also mine 
the errors to see if we can 
identify data instances for which 
this was high. But then, if this is 
so, we could have improved 
predictions at such regions. Like, 
construct predictors that predict 
the error. This is weird. Could we 
then also construct a predictor, 
that predicts the error of the 
predictor that predicts the error? 
Strangely enough, such ideas 
have recently led to something 
called Gradient Boosted Trees, 
which are nowadays among the 
best regressors (and are coming 
to Orange soon).


