
Introduction to Data Mining September 2016

Lesson 17: Another Overfitting
Demo
It is worth repeating: you should never select features or perform
any other data preprocessing (binning, noise filtering,
normalization…) on the data you will later use, in part, for testing.
These operations are part of the analysis and can be carried out
only on the training data set.

Here is a simple illustration why this is wrong. Consider a random
data set with 100 instances, described by 10,000 features and
assigned randomly to any of the two classes.

�

Although the data is random, there are enough features that some
are randomly correlated with the class. We have previously used
the Rank widget to find them. To make our illustration more
illustrative, we will now use Rank projections to find a good a pair
of features. Projection ranking discovers that, among few other
feature pairs, features 52 and 8317 almost perfectly split the data
into a red and blue region.

We use the Select column widget to remove all features but these
two; the entire data set is now reduced to the above plot. We run,
say, Logistic regression through 5-fold cross validation and get
excellent results.

�32

It is amazing, though, how
quickly we spot random
patterns. Adding a bit of color
provides a “convincing
argument” for the existence of
“blue” and “red” regions in this
plot.

Download the file with a random
data set from  
http://bit.ly/1EEB4FX

http://bit.ly/1EEB4FX
http://bit.ly/1EEB4FX

Introduction to Data Mining September 2016

Consider what we’ve done. We used projection ranking to find a
pattern in the random data. We reduced the whole data set to this
pattern and then used 5-fold cross validation to verify if logistic
regression is able to separate the classes. Of course it is! This is
exactly why we have selected the two features in the first place.

Now we will try to pull this off under the limitations of proper
procedure: we first store away some data (say one fifth, 10
instances) for testing. What is left is the training data, on which we
use projection rank to again find the best two features. This time,
we get features 52 and 4870; as before, we select them in the Select
Columns widget. We induce a classifier from this data. But - here’s
a difference: we don’t test using cross validation on preprocessed
data, but take the left out data instead. We use the Remaining data
from the Data Sampler in the Test Data in Test & Score widget.
We also have to choose the option Test on test data in the Test &
Score widget.

Logistic regression no longer works as well. Since the data is
random, the ten points that were left out and were not shown to
projection ranking can (and do) lie just anywhere in the plot.

The bulk of the work for pattern finding in these examples is done
by projection ranking, not by logistic regression.

In the second example, we have not used cross validation since it
would require us to perform projection ranking and manually
change the Select Columns’ settings for each fold — our manual
work would thus become part of the loop. In the example from the
previous lesson, feature selection was automated, so we could
include it within cross validation.

As a side note, having a separate test set — say a golden standard
— is quite common. A typical schema that uses it would look like
this.

�33

Introduction to Data Mining September 2016

Lesson 18: Model Scoring
In multiple choice exams, you are graded according to the number
of correct answers. The same goes for classifiers: the more correct
predictions they make, the better they are. Nothing could make
more sense. Right?

Maybe not. Dr. Smith is a specialist of a type and his diagnosis is
correct in 98% of the cases. Would you consider visiting him if you
have some symptoms related to his speciality?

Not necessarily. His specialty, in fact, are rare diseases (2 out of 100
of his patients have it) and, being lazy, he always dismisses
everybody as healthy. His predictions are worthless — although
extremely accurate. Classification accuracy is not an absolute
measure, which can be judged out of context. At the very least, it
has to be compared with the frequency of the majority class, which
is, in case of rare diseases, quite … major.

For instance, on GEO data set GDS 4182, the classification tree
achieves 78% accuracy on cross validation, which may be
reasonably good. Let us compare this with the Majority learner,
which implements Dr. Smith’s strategy by always predicting the
majority. It gets 83%. Classification trees are not so good after all,
are they?

On the other hand, their accuracy on GDS 3713 is 57%, which
seems rather good in comparison with the 50% achieved by
predicting the majority.

The problem with classification accuracy goes deeper,
though.

Classifiers usually make predictions based on probabilities
they compute. If a data instance belongs to class A with a
probability of 80% and to B with a probability of 20%, it is
classified as A. This makes sense, right?

Maybe not, again. Say you fall down the stairs and your leg hurts.
You open Orange, enter some data into your favorite model and

�34

What do other columns
represent? Keep reading!

Classes versus probabilities
estimated by logistic regression.
Can you replicate this image?

Introduction to Data Mining September 2016

compute a 20% of having your leg broken. So you assume your leg
is not broken and you take an aspirin. Or perhaps not?

What if the chance of a broken leg was just 10%? 5%? 0.1%?

Say we decide that any leg with a 1% chance of being broken will
be classified as broken. What will this do to our classification
threshold? It is going to decrease badly — but we apparently do
not care. What do we do care about then? What kind of “accuracy”
is important?

Not all mistakes are equal. We can summarize them in the
Confusion Matrix. Here is one for logistic regression on the heart
disease data.

Logistic regression correctly classifies 145 healthy
persons and 110 of the sick, the numbers on the
diagonal. Classification accuracy is then 255 out of
303, which is 84.2%.

19 healthy people were unnecessarily scared. The
opposite error is worse: the heart problems of 29

�35

These numbers in the Confusion
Matrix have names. An instance
can be classified as positive or
negative; imagine this as being
positive or negative when being
tested for some medical
condition. This classification can
be true or false. So there are four
options, true positive (TP), false
positive (FP), true negative (TN)
and false negative (FN).

Identify them in the table!

Use the output from Confusion
Matrix as a subset for Scatter
plot to explore the data
instances that were misclassified
in a certain way.

Introduction to Data Mining September 2016

persons went undetected. We need to distinguish between these
two kinds of mistakes.

We are interested in the probability that a person who has some
problem will be correctly diagnosed. There were 139 such cases,
and 110 were discovered. The proportion is 110 / 139 = 0.79. This
measure is called sensitivity or recall or true positive rate (TPR).

If you were interested only in sensitivity, though, here’s Dr. Smith’s
associate partner — wanting to be on the safe side, she considers
everybody ill, so she has a perfect sensitivity of 1.0.

To counterbalance the sensitivity, we compute the opposite: what
is the proportion of correctly classified negative instances? 145 out
of 164, that is, 88%. This is called specificity or true negative rate.

So, if you’re classified as OK, you have a 88% chance of actually
being OK? No, it’s the other way around: 88% is the chance of
being classified as OK, if you are OK. (Think about it, it’s not as
complicated as it sounds). If you’re interested in your chance of
being OK if the classifier tells you so, you look for the negative
predictive value. Then there’s also precision, the probability of being
positive if you’re classified as such. And the fall-out and negative
likelihood ratio and … a whole list of other indistinguishable fancy
names, each useful for some purpose.

�36

If you are interested in a complete
list, see the Wikipedia page on
Receiver operating characteristic,  
https://en.wikipedia.org/wiki/
Receiver_operating_characteristic

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Introduction to Data Mining September 2016

Lesson 19: Choosing the
Decision Threshold
The common property of scores from the previous lesson is that
they depend on the threshold we choose for classifying an instance
as positive. By adjusting it, we can balance between them and find,
say, the threshold that gives us the required sensitivity at an
acceptable specificity. We can even assign costs (monetary or not)
to different kinds of mistakes and find the threshold with the
minimal expected cost.

A useful tool for this is the Receiver-Operating Characteristic
curve. Don’t mind the meaning of the name, just call it the ROC
curve.

Here are the curves for logistic regression, SVM with linear
kernels and naive Bayesian classifier (another method that looks
for the optimal hyperplane that separates the classes) on the same
ROC plot.

�37

Introduction to Data Mining September 2016

The curves show how the sensitivity (y-axis) and specificity (x-axis,
but from right to left) change with different thresholds.

There exists, for instance, a threshold for logistic regression (the
green curve) that gives us 0.65 sensitivity at 0.9 specificity (the
curve shows 1 - specificity). Or 0.9 sensitivity with a specificity of
0.8. Or a sensitivity of (almost) 1 with a specificity of somewhere
around 0.3.

The optimal point would be at top left. The diagonal represents
the behavior of a random guessing classifier.

Which of the three classifiers is the best now? It depends on the
specificity and sensitivity we want; at some points we prefer
logistic regression and at some points the naive bayesian classifier.
SVM doesn’t cut it, anywhere.

There is a popular score derived from the ROC curve, called Area
under curve, AUC. It measures, well, the area under the curve. If
the curve goes straight up and then right, the area is 1; this is
optimal AUC and not reached in practice. If the classifier guesses
at random, the curve follows the diagonal and AUC is 0.5.
Anything below that is equivalent to guessing + bad luck.

AUC has a kind of absolute scale. As a rule of a thumb: 0.6 is bad,
0.7 is bearable, 0.8 is publishable and 0.9 is suspicious.

AUC also has a nice probabilistic interpretation. Say that we are
given two data instances and we are told that one is positive and
the other is negative. We use the classifier to estimate the
probabilities of being positive for each instance, and decide that
the one with the highest probability is positive. It turns out that
the probability that such a decision is correct equals the AUC of
this classifier. Hence, AUC measures how well the classifier
discriminates between the positive and negative instances.

From another perspective: if we use a classifier to rank data
instances, then AUC of 1 signifies a perfect ranking, an AUC of 0.5
a random ranking and an AUC of 0 a perfect reversed ranking.

�38

Sounds complicated? If it helps:
perhaps you remember the term
parametric curve from some of
your math classes. ROC is a
parametric curve where x and y
(the sensitivity and 1 - specificity)
are a function of the same
parameter, the decision
threshold.

ROC curves and AUC are
fascinating tools. To learn more,
read T. Fawcett: ROC Graphs:
Notes and Practical
Considerations for Researchers

https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf

Introduction to Data Mining September 2016

Lesson 20: Linear Regression
For a start, let us construct a very simple data set. It will contain a
just one continuous input feature (let’s call it x) and a continuous
class (let’s call it y). We will use Paint Data, and then reassign one
of the features to be a class by using Select Column and moving
the feature y from the list of “Features” to a field with a target
variable. It is always good to check the results, so we are including
Data Table and Scatter Plot in the workflow at this stage. We will
be modest this time and only paint 10 points and will use Put
instead of the Brush tool.

We would like to build a model that predicts the value of class y
from the feature x. Say that we would like our model to be linear,
to mathematically express it as h(x)=𝜃0+𝜃1x. Oh, this is the
equation of a line. So we would like to draw a line through our data
points. The 𝜃0 is then an intercept, and 𝜃1 is a slope. But there are
many different lines we could draw. Which one is the best one?
Which one is the one that fits our data the most?

�39

In the Paint Data widget, remove
the Class-2 label from the list. If
you have accidentally left it while
painting, don’t despair. The class
variable will appear in the Select
Columns widget, but you can
“remove” it by dragging it into
the Available Variables list.

Introduction to Data Mining September 2016

The question above requires us to define what a good fit is. Say,
this could be the error the fitted model (the line) makes when it
predicts the value of y for a given data point (value of x). The
prediction is h(x), so the error is h(x) - y. We should treat the
negative and positive errors equally, plus, let us agree, we would
prefer punishing larger errors more severely than smaller ones.
Therefore, it is perfectly ok if we square the errors for each data
point and then sum them up. We got our objective function! Turns
out that there is only one line that minimizes this function. The
procedure that finds it is called linear regression. For cases where
we have only one input feature, Orange has a special widget in the
educational add-on called Polynomial Regression.

Looks ok. Except that these data points do not appear exactly on
the line. We could say that the linear model is perhaps too simple
for our data sets. Here is a trick: besides column x, the widget
Univariate Regression can add columns x2, x3… xn to our data set.
The number n is a degree of polynomial expansion the widget
performs. Try setting this number to higher values, say to 2, and
then 3, and then, say, to 9. With the degree of 3, we are then fitting
the data to a linear function h(x) = 𝜃0 + 𝜃1x + 𝜃1x2 + 𝜃1x3. 

�40

Do not worry about the strange
name of the widget Polynomial
Regression, we will get there in a
moment.

Introduction to Data Mining September 2016

The trick we have just performed (adding the higher order features
to the data table and then performing linear regression) is called
Polynomial Regression. Hence the name of the widget. We get
something reasonable with polynomials of degree 2 or 3, but then
the results get really wild. With higher degree polynomials, we
totally overfit our data.

Overfitting is related to the complexity of the model. In
polynomial regression, the models are defined through parameters
𝜃. The more parameters, the more complex is the model.

Obviously, the simplest model has just one parameter (an
intercept), ordinary linear regression has two (an intercept and a
slope), and polynomial regression models have as many parameters
as is the degree of the polynomial. It is easier to overfit with a
more complex model, as this can adjust to the data better. But is
the overfitted model really discovering the true data patterns?
Which of the two models depicted in the figures above would you
trust more?

�41

It is quite surprising to see that
linear regression model can
result in fitting non-linear
(univariate) functions. That is,
functions with curves, such as
those on the figures. How is this
possible? Notice though that the
model is actually a hyperplane (a
flat surface) in the space of many
features (columns) that are
powers of x. So for the degree 2,
h(x)=𝜃0+𝜃1x+𝜃1x2 is a (flat)

hyperplane. The visualization
gets curvy only once we plot h(x)
as a function of x.

Introduction to Data Mining September 2016

Lesson 21: Regularization
There has to be some cure for the overfitting. Something that
helps us control it. To find it, let’s check what the values of the
parameters 𝜃 under different degrees of polynomials actually are

With smaller degree polynomials values of 𝜃 stay small, but then as
the degree goes up, the numbers get really large.

More complex models can fit the training data better. The fitted
curve can wiggle sharply. The derivatives of such functions are
high, and so need to be the coefficients 𝜃. If only we could force

the linear regression to infer models with a small value of
coefficients. Oh, but we can. Remember, we have started with the
optimization function the linear regression minimizes, the sum of
squared errors. We could simply add to this a sum of all 𝜃 squared.

And ask the linear regression to minimize both terms. Perhaps we
should weigh the part with 𝜃 squared, say, we some coefficient λ,

just to control the level of regularization.

�42

Which inference of linear model
would overfit more, the one with
high λ or the one with low λ?
What should the value of λ be to
cancel regularization? What if
the value of λ is really high, say
1000?

Introduction to Data Mining September 2016

Here we go: we just reinvented regularization, a procedure that
helps machine learning models not to overfit the training data. 

�43

Introduction to Data Mining September 2016

To observe the effects of the regularization, we can give
Polynomial Regression our own learner, which supports these kind
of settings.

The Linear Regression widget provides two types of regularization.
Ridge regression is the one we have talked about and minimizes
the sum of squared coefficients 𝜃. Lasso regression minimizes the

sum of absolute value of coefficients. Although the difference may
seem negligible, the consequences are that lasso regression may
result in a large proportion of coefficients 𝜃 being zero, in this way
performing feature subset selection.

Now for the test. Increase the degree of polynomial to the max.
Use Ridge Regression. Does the inferred model overfit the data?
How does degree of overfitting depend on regularization strength?

�44

Internally, if no learner is present
on its input, the Polynomial
Regression widget would use
just its ordinary, non-regularized
linear regression.

Introduction to Data Mining September 2016

Lesson 22: Prediction of Tissue
Age from Level of Methylation
Enough painting. Now for the real data. We will use a data set that
includes human tissues from subjects at different age. The tissues
were profiled by measurements of DNA methylation, a mechanism
for cells to regulate the gene expression. Methylation of DNA is
scarce when we are young, and gets more abundant when we age.
We have prepared a data set where the degree of methylation was
expressed per each gene. Let us test if we can predict age from the
methylation profile, and if we can do this better than just
predicting the average age of subjects in the training set.

This schema looks familiar and is similar to those for classification
problems. The Test & Score widget reports on statistics we have
not seen before. MAE, for one, is the mean average error. Just like
for classification, we have used cross-validation, so MAE was
computed only on the test data instances and averaged across 10
runs of cross validation. The results indicate that our modeling
technique misses the age by about 5 years, which is a much better
result than predicting by a mean age in the training set.

�45

Download the methylation data
set from http://bit.ly/2c4X3fK.
Predictions of age from
methylation profile were
investigated by Horvath (2013)
Genome Biology 14:R115.

http://bit.ly/2c4X3fK
http://bit.ly/2c4X3fK

Introduction to Data Mining September 2016

Lesson 22: Evaluating Regression
The last lesson quickly introduced scoring for regression, and
important measures such as RMSE and MAE. In classification, a
nice addition to find misclassified data instances was the confusion
matrix. But the confusion matrix could only be applied to discrete
classes. Before Orange gets some similar for regression, one way to
find misclassified data instances is through scatter plot!

We can play around with this workflow by painting the data such
that the regression would perform well on blue data point and fail
on the red outliers. In the scatter plot we can check if the
difference between the predicted and true class was indeed what
we have expected.

�  

�46

This workflow visualizes the
predictions that were performed
on the training data. How would
you change the widget to use a
separate test set? Hint: The
Sample widget can help.

Introduction to Data Mining September 2016

A similar workflow would work for any data set. Take, for instance,
the housing data set (from Orange distribution). Say, just like
above, we would like to plot the relation between true and
predicted continuous class, but would like to add information on
the absolute error the predictor makes. Where is the error coming
from? We need a new column. The Feature Constructor widget
(albeit being a bit geekish) comes to the rescue.

In the Scatter Plot widget, we can now select the data
where the predictor erred substantially and explore
the results further.

�47

We could, in principle, also mine
the errors to see if we can
identify data instances for which
this was high. But then, if this is
so, we could have improved
predictions at such regions. Like,
construct predictors that predict
the error. This is weird. Could we
then also construct a predictor,
that predicts the error of the
predictor that predicts the error?
Strangely enough, such ideas
have recently led to something
called Gradient Boosted Trees,
which are nowadays among the
best regressors (and are coming
to Orange soon).

