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Lesson 5: Classification
In one of the previous lessons, we explored the heart disease data. 
We wanted to predict which persons have clogged arteries — but 
we actually did not make any predictions. We observed some 
potentially interesting relations between the features and the 
condition, but have never constructed an actual model.

Let us create one now.
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The data is fed into the Classification Tree widget, which infers a 
classification model and gives it to the Predictions widget. Note 
that unlike in our past workflows, in which the communication 
between widgets included only the data, we here have a channel 
that carries a predictive model.

The Predictions widget also 
receives the data from the File 
widget. The widget uses the 
model to make predictions about 
the data, and shows them in the 
table.

How correct are these 
predictions? Do we have a good 
model? How can we tell?

But (and even before answering 
these very important questions), 
what is a classification tree? And 
how does Orange create one? Is 
this algorithm something we 
should really use?

 
So many questions to answer today!
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Something in this workflow is 
conceptually wrong. Can you 
guess what?

We call the variable we wish to 
predict a target variable, or an 
outcome or, in traditional 
machine learning terminology, a 
class. Hence we talk about 
classification, classifiers, 
classification trees...
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Lesson 6: Classification Trees
In the previous lesson, we used a classification tree, one of the 
oldest, but still popular, machine learning methods. We like it since 
the method is easy to explain and gives rise to random forests, one 
of the most accurate machine learning techniques (more on this 
later). So, what kind of model is a classification tree? 

Let us load a data set from http://bit.ly/2bvhKNr that records the 
conditions under which a friend skipper went sailing, build a tree 
and visualize it in the Classification Tree Viewer.

We read the tree from 
top to bottom. Looks 
like this skipper is a 
social person; as soon as 
there’s company, the 
probability of her sailing 
increases. When joined 
by a smaller group of 
people, there is no 
sailing if there is rain. 
(Thunderstorms? Too 
dangerous?) When she 

has smaller company but 
the boat at her disposal is big, there is no sailing either.
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Here’s a warning: this sailing 
data is very small. Therefore, any 
relations inferred from the 
classification tree on this page 
are unreliable. What should the 
size of the data set be to acquire 
stronger conclusions?

The data set we will use comes 
from Google Spreadsheet. Copy 
the web address and paste it 
into URL entry box in the File 
widget.

http://bit.ly/2bvhKNr
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Trees place the most useful feature at the root. What would be the 
most useful feature? The feature that splits the data into two 
purest possible subsets. It then splits both subsets further, again by 
their most useful features, and keeps doing so until it reaches 
subsets in which all data belongs to the same class (leaf nodes in 
strong blue or red) or until it runs out of data instances to split or 
out of useful features (the two leaf nodes in white).

We still have not been very explicit about what we mean by “the 
most useful” feature. There are many ways to measure the quality 
of features, based on how well they distinguish between classes. 
We will illustrate the general idea with information gain. We can 
compute this measure in Orange using the Rank widget, which 
estimates the quality of data features and ranks them according to 
how informative they are about the class. We can either estimate 
the information gain from the whole data set, or compute it on 
data corresponding to an internal node of the classification tree in 
the Classification Tree Viewer. 

Besides the information gain, Rank displays several other measures 
(including Gain Ratio and Gini), which are often quite in 
agreement and were invented to better handle discrete features 
with many different values.
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The Rank widget could be used 
on its own. Say, to figure out 
which genes are best predictors 
of the phenotype in some gene 
expression data set. Or what 
experimental conditions to 
consider to profile the genes and 
assign their function. Oh, but we 
have already worked with a data 
set of this kind. What does Rank 
tell us about it?

Classification trees were hugely 
popular in the early years of 
machine learning, when they 
were first independently 
proposed by the engineer Ross 
Quinlan (C4.5) and a group of 
statisticians (CART), including the 
father of random forests Leo 
Brieman.

In this class, we will learn how to 
define and compute information 
gain. There’s a good explanation 
of this concept with formulas 
and graphs on 
stackoverflow.com (google it).

http://stackoverflow.com
http://stackoverflow.com


Introduction to Data Mining September 2016

Lesson 7: Model Inspection
Here’s another interesting combination of widgets: the 
classification tree viewer and the scatterplot. This time, consider 
the famous Iris data set (comes with Orange). In the Scatter Plot, 
find the best visualization of this data set, that is, the one that best 
separates the instances from different classes. Then connect the 
Classification Tree Viewer to the Scatterplot. Selecting any node of 
the tree will output the corresponding data subset, which will be 
shown in the scatter plot.

Just for fun, we have included a few other widgets in this workflow. 
In a way, the Classification Tree Viewer widget behaves like the 
Select Rows widget, except that the rules used to filter the data are 
inferred from the data itself and optimized to obtain purer data 
subsets. 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Wherever possible, visualizations 
in Orange are designed to 
support selection and passing of 
the data that applies to it. 
Finding interesting data subsets 
and analyzing their 
commonalities is a central part of 
explorative data analysis, a data 
analysis approach favored by the 
data visualization guru Edward 
Tufte.
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Lesson 8: Classification Accuracy
Now that we know what classification trees are, the next question 
is what is the quality of their predictions. For beginning, we need 
to define what we mean by quality. In classification, the simplest 
measure of quality is classification accuracy expressed as the 
proportion of data instances for which the classifier correctly 
guessed the value of the class. Let’s see if we can estimate, or at 
least get a feeling for, classification accuracy with the widgets we 
already know.

Let us try this schema with the brown-selected data set. The 
Predictions widget outputs a data table augmented with a column 
that includes predictions. In the Data Table widget, we can sort 
the data by any of these two columns, and manually select data 
instances where the values of these two features are different (this 
would not work on big data). Roughly, visually estimating the 
accuracy of predictions is straightforward in the Distribution 
widget, if we set the features in view appropriately.
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The measuring of accuracy is 
such an important concept that it 
would require its own widget. 
But wait a while, there’s 
educational value in reusing the 
widgets we already know.
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Lesson 9: How to Cheat
At this stage, the classification tree looks very good. There’s only 
one data point where it makes a mistake. Can we mess up the data 
set so bad that the trees will ultimately fail? Like, remove any 
existing correlation between gene expression profiles and class? We 
can! There’s the Preprocessing widget with randomize class 
preprocessor. Check out the chaos it creates in the Scatter Plot 
visualization where there were nice clusters before randomization!

Fine. There can be no classifier that can model this mess, 
right?. Let’s make sure. (When connecting Preprocess to 
Classification Tree, Orange will connect the Preprocessor 
signals. You will have to manually correct this by 
connecting output Preprocessed Data to Data. 
Connections in this dialog are removed by clicking on 
them.)
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Why is the background in this 
scatter plot so green, and only 
green? Why have the other 
colors disappeared after the 
class randomization?

This lesson has a strange title 
and it is not obvious why it was 
chosen. Maybe you, the reader, 
should tell us what does this 
lesson have to do with cheating.
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And the result? Here is a screenshot of the Distributions:

�

Most unusual. Almost no mistakes. How is this possible? On a 
class-randomized data set?

To find the answer to this riddle, open the Classification Tree 
Viewer and check out the tree. How many nodes does it have? Are 
there many data instances in the leaf nodes?

Looks like the tree just memorized every data instance from the 
data set. No wonder the predictions were right. The tree makes no 
sense, and it is complex because it simply remembered everything.

Ha, if this is so, if a classifier remembers everything from a data set 
but without discovering any general patterns, it should perform 
miserably on any new data set. Let us check this out. We will split 
our data set into two sets, training and testing, train the 
classification tree on the training data set and then estimate its 
accuracy on the test data set.
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The signals from the Data 
Sampler widget have not been 
named in our workflow to save 
space. The Data Sampler split the 
data to a sample and out-of-
sample (so called remaining 
data). The sample was given to 
the Classification Tree widget, 
while the remaining data was 
handed to the Predictions 
widget. Set the Data Sampler so 
that the size of these two data 
sets is about equal.
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Let’s check how the Distributions widget looks after testing  the 
classifier on the test data.

�

The first two classes are a complete fail. The predictions for 
ribosomal genes are a bit better, but still with lots of mistakes. On 
the class-randomized training data our classifier fails miserably. 
Finally, just as we would expect.

To really test the performance (accuracy) of the classification 
technique, we have just learned that we need to train the classifiers 
on the training set and then test it on a separate test set. With this 
test, we can distinguish between those classifiers that just 
memorize the training data and those that actually learn a general 
model. 

Learning is not simply memorizing. Rather, it is discovering 
patterns that govern the data and apply to new data as well. To 
estimate the accuracy of a classifier, we therefore need a separate 
test set. This estimate should not depend on just one division of 
the input data set to training and test set (here’s a place for 
cheating as well). Instead, we need to repeat the process of 
estimation several times, each time on a different train/test set and 
report on the average score.
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Turns out that for every class 
value the majority of data 
instances has been predicted to 
the ribosomal class (green). 
Why? Green again (like green 
from the Scatter Plot of the 
messed-up data)? Here is a hint: 
use the Box Plot widget to 
answer this question.

We needed to class-randomize 
only the training data set to fail 
in predictions. Try changing the 
workflow so that the classes are 
randomized only there, and not 
in the test set.
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Lesson 10: Cross-Validation
Estimating the accuracy may depend on a particular split of the 
data set. To increase robustness, we can repeat the measurement 
several times, each time choosing a different subset of the data for 
training. One such method is cross-validation. It is available in 
Orange through the Test & Score widget. 

Note that in each iteration, Test & Score will pick part of the data 
for training, learn the predictive model on this data using some 
machine learning method, and then test the accuracy of the 
resulting model on the remaining, test data set. For this, the 
widget will need on its input a data set from which it will sample 
data for training and testing, and a learning method which it will 
use on the training data set to construct a predictive model. In 
Orange, the learning method is simply called a learner. Hence, Test 
& Score needs a learner on its input. A typical workflow with this 
widget is as follows.

This is another way to use Classification Tree. In the workflows 
from the previous lessons we have used another of its outputs, 
called Classifier: its construction required the data. This time, no 
data is needed for Classification Tree, because all that we need 
from it a learner.

Here i show Test & Score widget looks like. CA stands for 
classification accuracy, and this is what we really care for for now. 
We will talk about other measures, like AUC, later.
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For geeks: a learner is an object 
that, given the data, outputs a 
classifier. Just what Test & Score 
needs.

Cross validation splits the data 
sets into, say, 10 different non-
overlapping subsets we call 
folds. In each iteration, one fold 
will be used for testing, while the 
data from all other folds will be 
used for training. In this way, 
each data instance will be used 
for testing exactly once.


