
Introduction to Data Mining September 2016

Lesson 5: Classification
In one of the previous lessons, we explored the heart disease data.
We wanted to predict which persons have clogged arteries — but
we actually did not make any predictions. We observed some
potentially interesting relations between the features and the
condition, but have never constructed an actual model.

Let us create one now.

�

The data is fed into the Classification Tree widget, which infers a
classification model and gives it to the Predictions widget. Note
that unlike in our past workflows, in which the communication
between widgets included only the data, we here have a channel
that carries a predictive model.

The Predictions widget also
receives the data from the File
widget. The widget uses the
model to make predictions about
the data, and shows them in the
table.

How correct are these
predictions? Do we have a good
model? How can we tell?

But (and even before answering
these very important questions),
what is a classification tree? And
how does Orange create one? Is
this algorithm something we
should really use?

 
So many questions to answer today!

�14

Something in this workflow is
conceptually wrong. Can you
guess what?

We call the variable we wish to
predict a target variable, or an
outcome or, in traditional
machine learning terminology, a
class. Hence we talk about
classification, classifiers,
classification trees...

Introduction to Data Mining September 2016

Lesson 6: Classification Trees
In the previous lesson, we used a classification tree, one of the
oldest, but still popular, machine learning methods. We like it since
the method is easy to explain and gives rise to random forests, one
of the most accurate machine learning techniques (more on this
later). So, what kind of model is a classification tree?

Let us load a data set from http://bit.ly/2bvhKNr that records the
conditions under which a friend skipper went sailing, build a tree
and visualize it in the Classification Tree Viewer.

We read the tree from
top to bottom. Looks
like this skipper is a
social person; as soon as
there’s company, the
probability of her sailing
increases. When joined
by a smaller group of
people, there is no
sailing if there is rain.
(Thunderstorms? Too
dangerous?) When she

has smaller company but
the boat at her disposal is big, there is no sailing either.

�15

Here’s a warning: this sailing
data is very small. Therefore, any
relations inferred from the
classification tree on this page
are unreliable. What should the
size of the data set be to acquire
stronger conclusions?

The data set we will use comes
from Google Spreadsheet. Copy
the web address and paste it
into URL entry box in the File
widget.

http://bit.ly/2bvhKNr

Introduction to Data Mining September 2016

Trees place the most useful feature at the root. What would be the
most useful feature? The feature that splits the data into two
purest possible subsets. It then splits both subsets further, again by
their most useful features, and keeps doing so until it reaches
subsets in which all data belongs to the same class (leaf nodes in
strong blue or red) or until it runs out of data instances to split or
out of useful features (the two leaf nodes in white).

We still have not been very explicit about what we mean by “the
most useful” feature. There are many ways to measure the quality
of features, based on how well they distinguish between classes.
We will illustrate the general idea with information gain. We can
compute this measure in Orange using the Rank widget, which
estimates the quality of data features and ranks them according to
how informative they are about the class. We can either estimate
the information gain from the whole data set, or compute it on
data corresponding to an internal node of the classification tree in
the Classification Tree Viewer.

Besides the information gain, Rank displays several other measures
(including Gain Ratio and Gini), which are often quite in
agreement and were invented to better handle discrete features
with many different values.

�16

The Rank widget could be used
on its own. Say, to figure out
which genes are best predictors
of the phenotype in some gene
expression data set. Or what
experimental conditions to
consider to profile the genes and
assign their function. Oh, but we
have already worked with a data
set of this kind. What does Rank
tell us about it?

Classification trees were hugely
popular in the early years of
machine learning, when they
were first independently
proposed by the engineer Ross
Quinlan (C4.5) and a group of
statisticians (CART), including the
father of random forests Leo
Brieman.

In this class, we will learn how to
define and compute information
gain. There’s a good explanation
of this concept with formulas
and graphs on
stackoverflow.com (google it).

http://stackoverflow.com
http://stackoverflow.com

Introduction to Data Mining September 2016

Lesson 7: Model Inspection
Here’s another interesting combination of widgets: the
classification tree viewer and the scatterplot. This time, consider
the famous Iris data set (comes with Orange). In the Scatter Plot,
find the best visualization of this data set, that is, the one that best
separates the instances from different classes. Then connect the
Classification Tree Viewer to the Scatterplot. Selecting any node of
the tree will output the corresponding data subset, which will be
shown in the scatter plot.

Just for fun, we have included a few other widgets in this workflow.
In a way, the Classification Tree Viewer widget behaves like the
Select Rows widget, except that the rules used to filter the data are
inferred from the data itself and optimized to obtain purer data
subsets. 

�17

Wherever possible, visualizations
in Orange are designed to
support selection and passing of
the data that applies to it.
Finding interesting data subsets
and analyzing their
commonalities is a central part of
explorative data analysis, a data
analysis approach favored by the
data visualization guru Edward
Tufte.

Introduction to Data Mining September 2016

Lesson 8: Classification Accuracy
Now that we know what classification trees are, the next question
is what is the quality of their predictions. For beginning, we need
to define what we mean by quality. In classification, the simplest
measure of quality is classification accuracy expressed as the
proportion of data instances for which the classifier correctly
guessed the value of the class. Let’s see if we can estimate, or at
least get a feeling for, classification accuracy with the widgets we
already know.

Let us try this schema with the brown-selected data set. The
Predictions widget outputs a data table augmented with a column
that includes predictions. In the Data Table widget, we can sort
the data by any of these two columns, and manually select data
instances where the values of these two features are different (this
would not work on big data). Roughly, visually estimating the
accuracy of predictions is straightforward in the Distribution
widget, if we set the features in view appropriately.

�18

The measuring of accuracy is
such an important concept that it
would require its own widget.
But wait a while, there’s
educational value in reusing the
widgets we already know.

Introduction to Data Mining September 2016

Lesson 9: How to Cheat
At this stage, the classification tree looks very good. There’s only
one data point where it makes a mistake. Can we mess up the data
set so bad that the trees will ultimately fail? Like, remove any
existing correlation between gene expression profiles and class? We
can! There’s the Preprocessing widget with randomize class
preprocessor. Check out the chaos it creates in the Scatter Plot
visualization where there were nice clusters before randomization!

Fine. There can be no classifier that can model this mess,
right?. Let’s make sure. (When connecting Preprocess to
Classification Tree, Orange will connect the Preprocessor
signals. You will have to manually correct this by
connecting output Preprocessed Data to Data.
Connections in this dialog are removed by clicking on
them.)

�19

Why is the background in this
scatter plot so green, and only
green? Why have the other
colors disappeared after the
class randomization?

This lesson has a strange title
and it is not obvious why it was
chosen. Maybe you, the reader,
should tell us what does this
lesson have to do with cheating.

Introduction to Data Mining September 2016

And the result? Here is a screenshot of the Distributions:

�

Most unusual. Almost no mistakes. How is this possible? On a
class-randomized data set?

To find the answer to this riddle, open the Classification Tree
Viewer and check out the tree. How many nodes does it have? Are
there many data instances in the leaf nodes?

Looks like the tree just memorized every data instance from the
data set. No wonder the predictions were right. The tree makes no
sense, and it is complex because it simply remembered everything.

Ha, if this is so, if a classifier remembers everything from a data set
but without discovering any general patterns, it should perform
miserably on any new data set. Let us check this out. We will split
our data set into two sets, training and testing, train the
classification tree on the training data set and then estimate its
accuracy on the test data set.

�20

The signals from the Data
Sampler widget have not been
named in our workflow to save
space. The Data Sampler split the
data to a sample and out-of-
sample (so called remaining
data). The sample was given to
the Classification Tree widget,
while the remaining data was
handed to the Predictions
widget. Set the Data Sampler so
that the size of these two data
sets is about equal.

Introduction to Data Mining September 2016

Let’s check how the Distributions widget looks after testing the
classifier on the test data.

�

The first two classes are a complete fail. The predictions for
ribosomal genes are a bit better, but still with lots of mistakes. On
the class-randomized training data our classifier fails miserably.
Finally, just as we would expect.

To really test the performance (accuracy) of the classification
technique, we have just learned that we need to train the classifiers
on the training set and then test it on a separate test set. With this
test, we can distinguish between those classifiers that just
memorize the training data and those that actually learn a general
model.

Learning is not simply memorizing. Rather, it is discovering
patterns that govern the data and apply to new data as well. To
estimate the accuracy of a classifier, we therefore need a separate
test set. This estimate should not depend on just one division of
the input data set to training and test set (here’s a place for
cheating as well). Instead, we need to repeat the process of
estimation several times, each time on a different train/test set and
report on the average score.

�21

Turns out that for every class
value the majority of data
instances has been predicted to
the ribosomal class (green).
Why? Green again (like green
from the Scatter Plot of the
messed-up data)? Here is a hint:
use the Box Plot widget to
answer this question.

We needed to class-randomize
only the training data set to fail
in predictions. Try changing the
workflow so that the classes are
randomized only there, and not
in the test set.

Introduction to Data Mining September 2016

Lesson 10: Cross-Validation
Estimating the accuracy may depend on a particular split of the
data set. To increase robustness, we can repeat the measurement
several times, each time choosing a different subset of the data for
training. One such method is cross-validation. It is available in
Orange through the Test & Score widget.

Note that in each iteration, Test & Score will pick part of the data
for training, learn the predictive model on this data using some
machine learning method, and then test the accuracy of the
resulting model on the remaining, test data set. For this, the
widget will need on its input a data set from which it will sample
data for training and testing, and a learning method which it will
use on the training data set to construct a predictive model. In
Orange, the learning method is simply called a learner. Hence, Test
& Score needs a learner on its input. A typical workflow with this
widget is as follows.

This is another way to use Classification Tree. In the workflows
from the previous lessons we have used another of its outputs,
called Classifier: its construction required the data. This time, no
data is needed for Classification Tree, because all that we need
from it a learner.

Here i show Test & Score widget looks like. CA stands for
classification accuracy, and this is what we really care for for now.
We will talk about other measures, like AUC, later.

�22

For geeks: a learner is an object
that, given the data, outputs a
classifier. Just what Test & Score
needs.

Cross validation splits the data
sets into, say, 10 different non-
overlapping subsets we call
folds. In each iteration, one fold
will be used for testing, while the
data from all other folds will be
used for training. In this way,
each data instance will be used
for testing exactly once.

